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Computational electromagnetics entails numerical solution of Maxwell’s equations and has been one
of the foundational pillars of modern electrical engineering. In this work, we demonstrate higher order,
structure preserving finite element methods for the following system of Maxwell’s equations:

∂p

∂t
+∇E = fp in Ω× (0, T ],

∇p+
∂E

∂t
−∇×H = fE in Ω× (0, T ],

∂H

∂t
+∇× E = fH in Ω× (0, T ],

where Ω ⊂ R2/R3 is a domain with Lipschitz boundary ∂Ω and with the following homogeneous boundary
conditions: p = 0, E × n = 0, H · n = 0 on ∂Ω × (0, T ], where n is the unit outward normal to ∂Ω, and
with the following initial conditions: p(x, 0) = p0(x), E(x, 0) = E0(x), and H(x, 0) = H0(x) for x ∈ Ω.
We shall characterize the solution of this problem posed using a mixed variational formulation as follows.

Theorem 1 (Well Posedness). Let fp ∈ L1[0, T ]× L2(Ω), fE ∈ L1[0, T ]× L2(Ω), and fH ∈ L1[0, T ]×
L2(Ω). Then the solution (p,E,H) of the Maxwell’s equations posed using a mixed variational formulation
with the given initial and boundary conditions and with sufficient regularity satisfies:

∥p∥+ ∥E∥+ ∥H∥ ≤ C
[
∥p0∥+ ∥E0∥+ ∥H0∥ + ∥fp∥+ ∥fE∥+ ∥fH∥

]
,

for a positive bounded constant C and appropriate choices of the norms.

We shall then demonstrate computational results for some model problems in two and three dimensions
using backward Euler and Crank-Nicholson schemes for the time discretization and finite elements for the
spatial discretization. Our finite elements spaces shall be drawn from a de Rham sequence of conforming
finite dimensional polynomial function spaces spanned by linear and quadratic Lagrange polynomial, and
Nédélec and Raviart-Thomas vector basis elements.


