Higher Order Mixed Finite Elements for Maxwell's Equations

Math Open House 2023

Archana Arya

Ph.D. Student in Mathematics
November 25, 2023, Saturday

III) MATHEMATICS

Overview

- Computational electromagnetics entails numerical solution of Maxwell's equations and has been one of the foundational pillars of modern electrical engineering.
- We shall demonstrate higher order, structure preserving finite element methods for the solution of problems modelled using Maxwell's equations.
- We discuss the proof idea for existence of solution for the weak formulation.
- Our finite elements spaces shall be drawn from a de Rham sequence of conforming finite dimensional polynomial function spaces.
- Our time discretization schemes will be Backward Euler and Crank-Nicholson.
- At last, we shall demonstrate some computational results using linear and quadratic finite elements.

Maxwell's Equation

We demonstrate our results for the following system of Maxwell's equations:

$$
\begin{align*}
\frac{\partial p}{\partial t}+\nabla \cdot \varepsilon E & =f_{p} \text { in } \Omega \times(0, T], \\
\nabla p+\varepsilon \frac{\partial E}{\partial t}-\nabla \times H & =f_{E} \text { in } \Omega \times(0, T], \tag{1a}\\
\mu \frac{\partial H}{\partial t}+\nabla \times E & =f_{H} \text { in } \Omega \times(0, T],
\end{align*}
$$

where $\Omega \subset \mathbb{R}^{2} / \mathbb{R}^{3}$ is a domain with Lipschitz boundary $\partial \Omega$ and with the following homogeneous boundary conditions:

$$
\begin{equation*}
p=0, E \times n=0, H \cdot n=0 \text { on } \partial \Omega \times(0, T], \tag{1b}
\end{equation*}
$$

where n is the unit outward normal to $\partial \Omega$, and with the following initial conditions:

$$
\begin{equation*}
p(x, 0)=p_{0}(x), E(x, 0)=E_{0}(x), \text { and } H(x, 0)=H_{0}(x) \text { for } x \in \Omega . \tag{1c}
\end{equation*}
$$

In these equations, $E(x, t)$ and $H(x, t)$ denote the electric and magnetic fields, respectively, and $p(x, t)$ is a physically fictitious electric pressure. The material parameters ε and μ denotes electric permittivity and magnetic permeability respectively. Finally, we shall assume that the initial conditions provided satisfy:

$$
\nabla \cdot\left(\varepsilon E_{0}\right)=p_{0}, \text { and } \nabla \cdot\left(\mu H_{0}\right)=0 \text { in } \Omega .
$$

Weak Formulation

For given boundary conditions, find $(p, E, H) \in \dot{H}_{\varepsilon^{-1}}^{1}(\Omega) \times \stackrel{\circ}{H}_{\varepsilon}(\operatorname{curl} ; \Omega) \times \dot{H}_{\mu}(\operatorname{div} ; \Omega)$:

$$
\begin{align*}
\left\langle\frac{\partial p}{\partial t}, \tilde{p}\right\rangle-\langle\varepsilon E, \nabla \tilde{p}\rangle & =\left\langle f_{p}, \tilde{p}\right\rangle, & \tilde{p} \in \grave{H}_{\varepsilon^{-1}}^{1}(\Omega), \tag{2a}\\
\langle\nabla p, \widetilde{E}\rangle+\left\langle\varepsilon \frac{\partial E}{\partial t}, \widetilde{E}\right\rangle-\langle H, \nabla \times \widetilde{E}\rangle & =\left\langle f_{E}, \widetilde{E}\right\rangle, & \widetilde{E} \in \grave{H}_{\varepsilon}(\operatorname{curl} ; \Omega), \tag{2b}\\
\left\langle\mu \frac{\partial H}{\partial t}, \widetilde{H}\right\rangle+\langle\nabla \times E, \widetilde{H}\rangle, & =\left\langle f_{H}, \widetilde{H}\right\rangle, & \widetilde{H} \in \grave{H}_{\mu}(\operatorname{div} ; \Omega), \tag{2c}
\end{align*}
$$

for $t \in(0, T]$ with given initial conditions.

Weak Formulation

$$
\begin{align*}
\left\langle\frac{\partial p}{\partial t}, \tilde{p}\right\rangle-\langle\varepsilon E, \nabla \tilde{p}\rangle & =\left\langle f_{p}, \tilde{p}\right\rangle, & \tilde{p} \in \grave{H}_{\varepsilon^{-1}}^{1}(\Omega), \tag{2a}\\
\langle\nabla p, \widetilde{E}\rangle+\left\langle\varepsilon \frac{\partial E}{\partial t}, \widetilde{E}\right\rangle-\langle H, \nabla \times \widetilde{E}\rangle & =\left\langle f_{E}, \widetilde{E}\right\rangle, & \widetilde{E} \in \stackrel{\circ}{\varepsilon}_{\varepsilon}(\operatorname{curl} ; \Omega), \tag{2b}\\
\left\langle\mu \frac{\partial H}{\partial t}, \widetilde{H}\right\rangle+\langle\nabla \times E, \widetilde{H}\rangle, & =\left\langle f_{H}, \widetilde{H}\right\rangle, & \widetilde{H} \in \grave{H}_{\mu}(\operatorname{div} ; \Omega), \tag{2c}
\end{align*}
$$

for $t \in(0, T]$ with given initial conditions.

de Rham Complex

- Vector Calculus Version

Scalar functions $\underset{- \text { div }}{\stackrel{\text { grad }}{\leftrightarrows}}$ Vector fields $\underset{\text { curl }}{\stackrel{\text { curl }}{\leftrightarrows}}$ Vector fields $\underset{- \text { grad }}{\stackrel{\text { div }}{\leftrightarrows}}$ Density functions

- Functional Analysis Version

$$
\stackrel{\circ}{H}_{\varepsilon^{-1}}^{1}(\Omega) \underset{- \text { div }}{\stackrel{\text { grad }}{\leftrightarrows}} \stackrel{\circ}{\varepsilon}_{\varepsilon}(\operatorname{curl}, \Omega) \underset{\text { curl }}{\stackrel{\text { curl }}{\leftrightarrows}} \stackrel{\circ}{H}_{\mu}(\operatorname{div}, \Omega) \underset{\text { grad }}{\stackrel{- \text { div }}{\leftrightarrows}} L^{2}(\Omega)
$$

Energy Estimate

Energy

Energy of the Maxwell's equations is defined to be $\|p\|_{\varepsilon^{-1}}^{2}+\|E\|_{\varepsilon}^{2}+\|H\|_{\mu}^{2}$.

Theorem (Energy Estimate)

Let $f_{p} \in L^{1}[0, T] \times L_{\varepsilon^{-1}}^{2}(\Omega), f_{E} \in L^{1}[0, T] \times L_{\varepsilon^{-1}}^{2}(\Omega)$, and
$f_{H} \in L^{1}[0, T] \times L_{\mu^{-1}}^{2}(\Omega)$. Then the solution (p, E, H) of Equations (2a) to (2c) with initial conditions as in Equation (1c) and assuming sufficient regularity with $p \in C^{1}[0, T] \times{\stackrel{\circ}{\varepsilon^{-1}}}_{1}^{(}(\Omega), E \in C^{1}[0, T] \times \stackrel{\circ}{H}_{\varepsilon}(\operatorname{curl} ; \Omega)$, and $H \in C^{1}[0, T] \times \stackrel{\circ}{H}_{\mu}($ div; $\Omega)$ satisfies:

$$
\begin{aligned}
& \|p\|_{\varepsilon^{-1}}+\|E\|_{\varepsilon}+\|H\|_{\mu} \leq \sqrt{3}\left[\left\|p_{0}\right\|_{\varepsilon^{-1}}+\left\|E_{0}\right\|_{\varepsilon}+\left\|H_{0}\right\|_{\mu}+\right. \\
& \left.\quad\left\|f_{p}\right\|_{L^{1}[0, T] \times L_{\varepsilon^{-1}}^{2}(\Omega)}+\left\|f_{E}\right\|_{L^{1}[0, T] \times L_{\varepsilon^{-1}}^{2}(\Omega)}+\left\|f_{H^{\prime}}\right\|_{L^{1}[0, T] \times L_{\mu^{-1}}^{2}(\Omega)}\right] .
\end{aligned}
$$

Proof Idea

- We start our proof by choosing $\tilde{p}=\varepsilon^{-1} p, \widetilde{E}=E$ and $\widetilde{H}=H$ in Equations (2a) to (2c) shown below:

$$
\begin{align*}
\left\langle\frac{\partial p}{\partial t}, \tilde{p}\right\rangle-\langle\varepsilon E, \nabla \widetilde{p}\rangle & =\left\langle f_{p}, \widetilde{p}\right\rangle, & \tilde{p} \in \dot{H}_{\varepsilon^{1}-1}^{1}(\Omega), \tag{2a}\\
\langle\nabla p, \widetilde{E}\rangle+\left\langle\varepsilon \frac{\partial E}{\partial t}, \widetilde{E}\right\rangle-\langle H, \nabla \times \widetilde{E}\rangle & =\left\langle f_{E}, \widetilde{E}\right\rangle, & \widetilde{E} \in \dot{H}_{\varepsilon}(\operatorname{curr} ; \Omega), \tag{2b}\\
\left\langle\mu \frac{\partial H}{\partial t}, \widetilde{H}\right\rangle+\langle\nabla \times E, \widetilde{H}\rangle, & =\left\langle f_{H}, \widetilde{H}\right\rangle, & \widetilde{H} \in \dot{H}_{\mu}(\operatorname{div}, \Omega), \tag{2c}
\end{align*}
$$

- Adding the resultant equations and using the properties of the inner product, we get:

$$
\left\langle\frac{\partial p}{\partial t}, \varepsilon^{-1} p\right\rangle+\left\langle\varepsilon \frac{\partial E}{\partial t}, E\right\rangle+\left\langle\mu \frac{\partial H}{\partial t}, H\right\rangle=\left\langle f_{p}, \varepsilon^{-1} p\right\rangle+\left\langle f_{E}, E\right\rangle+\left\langle f_{H}, H\right\rangle .
$$

Proof Idea

- We start our proof by choosing $\tilde{p}=\varepsilon^{-1} p, \widetilde{E}=E$ and $\widetilde{H}=H$ in Equations (2a) to (2c) shown below:

$$
\begin{align*}
\left\langle\frac{\partial p}{\partial t}, \tilde{p}\right\rangle-\langle\varepsilon E, \nabla \widetilde{p}\rangle=\left\langle f_{p}, \widetilde{p}\right\rangle, & \tilde{p} \in \dot{H}_{e^{1}-1}^{1}(\Omega), \tag{2a}\\
\langle\nabla p, \widetilde{E}\rangle+\left\langle\varepsilon \frac{\partial E}{\partial t}, \widetilde{E}\right\rangle-\langle H, \nabla \times \widetilde{E}\rangle=\left\langle f_{E}, \widetilde{E}\right\rangle, & \widetilde{E} \in \dot{H}_{\varepsilon}(\operatorname{curl} ; \Omega), \tag{2b}\\
\left\langle\mu \frac{\partial H}{\partial t}, \widetilde{H}\right\rangle+\langle\nabla \times E, \widetilde{H}\rangle,=\left\langle f_{H}, \widetilde{H}\right\rangle, & \widetilde{H} \in \dot{H}_{\mu}(\operatorname{div} ; \Omega), \tag{2c}
\end{align*}
$$

- Adding the resultant equations and using the properties of the inner product, we get:

$$
\left\langle\frac{\partial p}{\partial t}, \varepsilon^{-1} p\right\rangle+\left\langle\varepsilon \frac{\partial E}{\partial t}, E\right\rangle+\left\langle\mu \frac{\partial H}{\partial t}, H\right\rangle=\left\langle f_{p}, \varepsilon^{-1} p\right\rangle+\left\langle f_{E}, E\right\rangle+\left\langle f_{H}, H\right\rangle
$$

- Consider $\frac{d}{d t}\|p\|_{\varepsilon^{-1}}^{2}=2\left\langle\frac{\partial p}{\partial t}, \varepsilon^{-1} p\right\rangle, \frac{d}{d t}\|E\|_{\varepsilon}^{2}=2\left\langle\varepsilon \frac{\partial E}{\partial t}, E\right\rangle$, and $\frac{d}{d t}\|H\|_{\mu}^{2}=2\left\langle\mu \frac{\partial H}{\partial t}, H\right\rangle$.
- Using these, Cauchy-Schwarz inequality, integrating w.r.t. ' t ', and further using Gronwall-OuLang inequality we obtain:

$$
\sqrt{\|p\|_{\varepsilon^{-1}}^{2}+\|E\|_{\varepsilon}^{2}+\|H\|_{\mu}^{2}} \leq \sqrt{\left\|p_{0}\right\|_{\varepsilon^{-1}}^{2}+\left\|E_{0}\right\|_{\varepsilon}^{2}+\left\|H_{0}\right\|_{\mu}^{2}}+\int_{0}^{T}\left(\left\|f_{p}\right\|_{\varepsilon^{-1}}+\left\|f_{E}\right\|_{\varepsilon^{-1}}+\left\|f_{H}\right\|_{\mu^{-1}}\right) d s
$$

- Finally, using the equivalence of 1 - and 2-norms we have our desired result:

$$
\begin{aligned}
& \|p\|_{\varepsilon^{-1}}+\|E\|_{\varepsilon}+\|H\|_{\mu} \leq \sqrt{3}\left[\left\|p_{0}\right\|_{\varepsilon^{-1}}+\left\|E_{0}\right\|_{\varepsilon}+\left\|H_{0}\right\|_{\mu}+\right. \\
& \left.\left\|f_{p}\right\|_{L^{1}[0, T] \times L_{\varepsilon^{-1}}^{2}(\Omega)}+\left\|f_{E}\right\|_{L^{1}[0, T] \times L_{\varepsilon^{-1}}^{2}(\Omega)}+\left\|f_{H}\right\|_{L^{1}[0, T] \times L_{\mu^{-1}}^{2}(\Omega)}\right] .
\end{aligned}
$$

Energy Conservation

Remark

As a result of above theorem, and by a standard argument, the solution to the variational formulation of the Maxwell's equations with given initial conditions has a unique solution.

Corollary (Energy Conservation)

If the forcing functions in the Maxwell's equations are all zero, that is, $f_{p}=0$ and $f_{E}=f_{H}=0$ and with initial conditions then:

$$
\|p\|_{\varepsilon^{-1}}^{2}+\|E\|_{\varepsilon}^{2}+\|H\|_{\mu}^{2}=\left\|p_{0}\right\|_{\varepsilon^{-1}}^{2}+\left\|E_{0}\right\|_{\varepsilon}^{2}+\left\|H_{0}\right\|_{\mu}^{2} .
$$

Spatial Discretization

Now we will show that how we can solve this problem computationally:

Spatial Discretization

Now we will show that how we can solve this problem computationally:

Here is a very small example that how we can use finite element method:

Strong form $2^{\text {nd }}$ order PDE	$-\operatorname{div} \operatorname{grad} u=f$ on Ω
Dirichlet Boundary conditions	$u=0$ on $\partial \Omega$
Weak form	$\langle\operatorname{grad} u, \operatorname{grad} v\rangle=\langle f, v\rangle$
Matrix form	$\left[S_{00}\right][u]=[b]$
Function spaces	$u, v \in \dot{H}_{\varepsilon^{-1}}^{1}(\Omega)$

Basis Elements

Linear

Lagrange
Basis (2d)

Time Discretizations

Consider uniform discretization of $[0, T]$ as $t^{n}:=n \Delta t, n=0,1, \ldots, N$ for some $\Delta t>0$ being the fixed time step size such that $N \Delta t=T$.

Backward Euler:

$$
\begin{align*}
\left\langle\frac{p^{n}-p^{n-1}}{\Delta t}, \tilde{p}\right\rangle-\left\langle\varepsilon E^{n}, \nabla \tilde{p}\right\rangle & =\left\langle f_{p}^{n}, \tilde{p}\right\rangle, \tag{3a}\\
\left\langle\nabla p^{n}, \widetilde{E}\right\rangle+\left\langle\varepsilon \frac{E^{n}-E^{n-1}}{\Delta t}, \widetilde{E}\right\rangle-\left\langle H^{n}, \nabla \times \widetilde{E}\right\rangle & =\left\langle f_{E}^{n}, \widetilde{E}\right\rangle, \tag{3b}\\
\left\langle\mu \frac{H^{n}-H^{n-1}}{\Delta t}, \widetilde{H}\right\rangle+\left\langle\nabla \times E^{n}, \widetilde{H}\right\rangle & =\left\langle f_{H}^{n}, \widetilde{H}\right\rangle, \tag{3c}
\end{align*}
$$

Crank Nicholson:

$$
\begin{equation*}
\left\langle\frac{p^{n}-p^{n-1}}{\Delta t}, \tilde{p}\right\rangle-\left\langle\frac{1}{2}\left(\varepsilon E^{n}+\varepsilon E^{n-1}\right), \nabla \tilde{p}\right\rangle=\left\langle\frac{1}{2}\left(f_{p}^{n}+f_{p}^{n-1}\right), \tilde{p}\right\rangle \tag{4a}
\end{equation*}
$$

$$
\begin{align*}
\left\langle\frac{1}{2}\left(\nabla p^{n}+\nabla p^{n-1}\right), \widetilde{E}\right\rangle+\left\langle\varepsilon \frac{E^{n}-E^{n-1}}{\Delta t}, \widetilde{E}\right\rangle-\left\langle\frac{1}{2}\left(H^{n}+H^{n-1}\right), \nabla \times \widetilde{E}\right\rangle & =\left\langle\frac{1}{2}\left(f_{E}^{n}+f_{E}^{n-1}\right), \widetilde{E}\right\rangle, \tag{4b}\\
\left\langle\mu \frac{H^{n}-H^{n-1}}{\Delta t}, \widetilde{H}\right\rangle+\left\langle\frac{1}{2}\left(\nabla \times E^{n}+\nabla \times E^{n-1}\right), \widetilde{H}\right\rangle & =\left\langle\frac{1}{2}\left(f_{H}^{n}+f_{H}^{n-1}\right), \widetilde{H}\right\rangle, \tag{4c}
\end{align*}
$$

Given:
Computed:

Python Code Fragment

```
# Crank Nicholson
# Setup the linear system for the solution of p, E and H
S_LHS = sprs.bmat([[1/dt*M00_g, -S01_g/2, None],
    [-S01_g.T/2, -epsilon/dt*M11_g, mu*S12_g/2],
    [None, S12_g.T/2, mu/dt*M22_g]], format='csr')
# Setup right hand side intermediate variables
bp_RHS = b_p/2 + 1/dt*M00_g*p[time_step - 1] + S01_g/2*E[time_step - 1]
bE_RHS = -b_E/2 + S01_g.T/2*p[time_step - 1] - epsilon/dt*M11_g*E[time_step - 1]
bH_RHS = b_H/2 - S12_g.T/2*E[time_step - 1] + mu/dt*M22_g*H[time_step - 1]
# Impose boundary conditions
S_LHS[boundary_vertex_indices] = 0
S_LHS[boundary_vertex_indices, boundary_vertex_indices] = 1
S_LHS[N0 + boundary_edge_indices] = 0
S_LHS[N0 + boundary_edge_indices, N0 + boundary_edge_indices] = 1
bp_RHS[boundary_vertex_indices] = p_bc
bE_RHS[boundary_edges] = E_boundary
# Setup the right hand side vector
b_RHS = np.concatenate((bp_RHS, bE_RHS, bH_RHS))
# Obtain the linear system solution for E and H
x = pEH_solver.solve(S_LHS, b_RHS)

\section*{2d Numerical Results on Unit Square (Crank-Nicholson)}


Computed \(E\) at \(t=0.000\)


Computed \(H\) at \(t=0.000\)


Computed \(E\) at \(t=0.250\)


Computed H at \(t=0.250\)


Computed \(E\) at \(t=0.500\)


Computed \(H\) at \(t=0.500\)


Computed \(E\) at \(t=0.750\)


Computed \(H\) at \(t=0.750\)


Computed \(E\) at \(t=1.000\)


Computed \(H\) at \(t=1.000\)


\section*{2d Analytical Results on Unit Square}


Analytical \(E\) at \(t=0.000\)


Analytical H at \(t=0.000\)


Analytical \(E\) at \(t=0.250\)


Analytical H at \(t=0.250\)


Analytical \(E\) at \(t=0.500\)


Analytical \(H\) at \(t=0.500\)


Analytical \(E\) at \(t=0.750\)


Analytical H at \(t=0.750\)


Analytical \(E\) at \(t=1.000\)


Analytical \(H\) at \(t=1.000\)



\section*{3d Numerical Results on Unit Cube (Crank-Nicholson)}

Quadratic \(E\) at \(t=0.000\)


Quadratic \(H\) at \(t=0.000\)


Quadratic \(E\) at \(t=0.250\)


Quadratic \(H\) at \(t=0.250\)


Quadratic \(E\) at \(t=0.500\)


Quadratic \(H\) at \(t=0.500\)


Quadratic \(E\) at \(t=0.750\)


Quadratic \(H\) at \(t=0.750\)



Quadratic \(H\) at \(t=1.000\)

\section*{Numerical Results (Energy Plots)}



\section*{Summary and Other Work}
- Here are some more results that we can show for the mentioned Crank-Nicholson scheme for we have shown results:

\section*{Discrete Energy Estimate}
\[
\left\|p^{N}\right\|_{\varepsilon^{-1}}+\left\|E^{N}\right\|_{\varepsilon}+\left\|H^{N}\right\|_{\mu} \leq C .
\]

\section*{Discrete Error Estimate}
\[
\left\|e_{p}^{N}\right\|_{\varepsilon^{-1}}+\left\|e_{E}^{N}\right\|_{\varepsilon}+\left\|e_{H}^{N}\right\|_{\mu} \leq C\left[(\Delta t)^{2}+\left\|e_{p}^{0}\right\|_{\varepsilon^{-1}}+\left\|e_{E}^{0}\right\|_{\varepsilon}+\left\|e_{H}^{0}\right\|_{\mu}\right] .
\]

\section*{Full Error Estimate}
\[
\left\|e_{p_{h}}^{N}\right\|_{\varepsilon^{-1}}+\left\|e_{E_{h}}^{N}\right\|_{\varepsilon}+\left\|e_{H_{h}}^{N}\right\|_{\mu} \leq C\left[(\Delta t)^{2}+h^{r}+h^{r}(\Delta t)^{2}\right] .
\]
- For more details, you can refer to our preprint: https://arxiv.org/abs/2310.20310

Thank You!
Questions?Remarks?Thoughts? archanaa@iiitd.ac.in```

