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Overview

- Computational electromagnetics entails numerical solution of Maxwell's
equations and has been one of the foundational pillars of modern
electrical engineering.

- We shall demonstrate higher order, structure preserving finite element

methods for the solution of problems modelled using Maxwell's
equations.
- We discuss the proof idea for existence of solution for the weak formulation.
- Our finite elements spaces shall be drawn from a de Rham sequence of
conforming finite dimensional polynomial function spaces.
- Our time discretization schemes will be Backward Euler and
Crank-Nicholson.

- At last, we shall demonstrate some computational results using linear
and quadratic finite elements.



Maxwell's Equation

We demonstrate our results for the following system of Maxwell's equations:

op .
En +V . eE=f,inQx(0,T],
Vp—i—s%—f—VxH:fEian(O,T]., (1a)
H .
uW—FVxE:meQX((LT],

where © c R?/R3 is a domain with Lipschitz boundary 99 and with the following
homogeneous boundary conditions:

p=0,Exn=0,H -n=00nd x (0,7T], (1b)
where n is the unit outward normal to 99, and with the following initial conditions:
p(z,0) = py(x), E(x,0) = Ey(x), and H(z,0) = Hy(z) for x € Q. (10)

In these equations, E(x,t) and H(z,t) denote the electric and magnetic fields,
respectively, and p(z,t) is a physically fictitious electric pressure. The material
parameters € and p denotes electric permittivity and magnetic permeability respectively.
Finally, we shall assume that the initial conditions provided satisfy:

V- (eEy) =py, and V- (uHy) = 0 in Q.



Weak Formulation

For given boundary conditions, find (p, B, H) € H, () x H_(curl; Q) x H,,(div; Q):

<%7ﬁ> - <5E, Vi)> = <fpvf7>v e flsl—l (Q) (Za)
(Vp,E) + <€%E> —(H,V x E) = (fg,E), FE € H,(curl; ), (2b)
<u%—lj, Hy +(V x B, Hy, = (fg, H), He H,(div;Q), (20)

for ¢t € (0,7 with given initial conditions.



Weak Formulation

For given boundary conditions, find (p, B, H) € H, () x H_(curl; Q) x H,,(div; Q):

(2 )~ (B, VB) = {fpoB), b€ ALL(Q), (22)
(Vp, E) + @%f,@ —(H,V X E) = (f, E), E e H_(curl;Q), (2b)
@%—i], Hy +(V x E,H), = (fy,H), H e H,(div;Q), (2¢)

for ¢t € (0,7 with given initial conditions.

de Rham Complex
- Vector Calculus Version

. grad curl div . .
Scalar functions —— Vector fields —— Vector fields —" Density functions
—div curl — grad

- Functional Analysis Version

- grad N curl . ) —div .
H!,(Q) =— H.(curl,Q) =—— H,(div,Q) T L*(Q)

—div curl grad



Energy Estimate

Energy
Energy of the Maxwell's equations is defined to be [jp2., + [ E[2 + |H|2.

Theorem (Energy Estimate)

Let f, € L'[0,T] x L2, (), fg € L'[0,T] x L2, (), and

fu € LY[0,T] x Li,l(Q). Then the solution (p, E, H) of Equations (2a)
to (2¢) with initial conditions as in Equation (1c) and assuming sufficient
regularity with p € C1[0,T] x H,(Q), E € C*[0,T] x H,_(curl; ), and
H € C0,T] x H,(div; Q) satisfies:

Il + 1Bl + 15, < V3| Ipoller + 1 Eoll + 1 Holl, +

||prL1[O,T]xL§71(Q) + ||fE”L1[0,T]><L§71(Q) + ||fH||L1[0,T]><Li71(Q) :



Proof Idea

- We start our proof by choosing p = e~p, E = E and H = H in Equations (2a) to (2c)

shown below: 5
(GpoB) = (B, VB) = (£,,B),  Be HL.(@), (a)

(Vp, B + @%,E) —(H,VxE) = (fn. B), E e H,(cut;), (2b)

<u6§,ﬁ> +(V x B, H), = (fyg, H), He H,(div;Q), (20)

- Adding the resultant equations and using the properties of the inner product, we get:

(2t} (50 B) - (u S H) = (e 8) + (s ) + (i, H).



Proof Idea

- We start our proof by choosing p = e~p, E = E and H = H in Equations (2a) to (2c)
shown below:

(% 5) (B, V) = (f,8), B e HL (@) (2a)
(V. B) + {0 By — (H,V x B) = (f B), Fe (o), (2b)
<u%,ﬁ>+<vXE.ﬁ>,: (fu. H), H e H,(div;Q), (20)
- Adding the resultant equations and using the properties of the inner product, we get:
%-,e*m TeLoN <u%f., H) = (f,0e7'0) + (f5. B) + (fr. H).
- Consider Zipl2, = 2(Z%,c7p), BT = 250 By and ZIHIL = 2(ur ).

- Using these Cauchy-Schwarz mequallty, integrating w.rt. ‘¢, and further using
Gronwall-Oulang inequality we obtain:

T
\/HpHil +IEIZ +H]7 < \/Ilpollil +IEoI2 + 1 HolZ + [ (1fpler + 1 fEler + 1fm ) ds.
0
- Finally, using the equivalence of 1- and 2-norms we have our desired result:

lples + 1Bl + 1H],, < \/g[Hpng—l + 1 Bols + 1Hol,. +

”Jﬁu”LHO,T]xL?NQ) + ||fE||L1[07T]><L§71(Q) + ”fH”Ll[OAT]xLiil(Q) - 5



Energy Conservation

Remark

As a result of above theorem, and by a standard argument, the solution to
the variational formulation of the Maxwell's equations with given initial
conditions has a unique solution.

Corollary (Energy Conservation)
If the forcing functions in the Maxwell's equations are all zero, that is,
f,=0and fz = fy = 0and with initial conditions then:

Ipl2-2 + I1E12 + 1HIE = IpollZ-s + 1Eo]2 + | Holl5-



Spatial Discretization

Now we will show that how we can solve this problem computationally:



Spatial Discretization

Now we will show that how we can solve this problem computationally:

. grad R curl R —div .
Hil,1 (Q) < > H_(curl, Q) > Hﬂ(div,ﬁl) ) > LZ(Q)
—div curl grad
T 1T, I T

HL,(Q) _erad A (curl,Q) _cwl A (div,Q) —div  [%(Q)
NP-(Q) "“dv NPI(Q) carl NP-(Q) grad NP ()

Here is a very small example that how we can use finite element method:

Strong form 2"¢ order PDE —dlygmile S f o9 i

Dirichlet Boundary conditions u = 0on o
Weak form (grad u, grad v) = (f,v)
Matrix form [SOO] [u] = [b}

Function spaces u,v € I—ilal,l ()




Basis Elements

Linear Quadratic

Lagrange / / \
Basis (2d) /

> ¥ r
o € RN <v A
Nédélec ::‘;{ e 2111 5 %«
. > > a
Basis (2d) TRRRRA vy A Riieny serif h¢
A v
. !E K vy 3
Raviart-Thomas  [rke (739 AR
. V bbbk H>A YA AAAAA 5 A
Basis (Zd) Li««4€ r>> Y 4k FEASSS 4 b4 ATTTT1
f‘} B <
L 2 2
Nedelec %" ;h‘ %
Basis (3d) VTN z
L N A A y
. W v .
Raviart-Thomas % t%? %ﬁﬁ & %
Basis (3d) g e RN



Time Discretizations

Consider uniform discretization of [0,7] as t" := nAt, n = 0,1,..., N for some At > 0
being the fixed time step size such that NAt = T.

Backward Euler:
<pn 7pn—1 5

At 7p> - <€E”7 Vf?> = <f;;lvﬁ>7 (33)
(v, B) + (eE"’TfH,Es —(H",V x B = (3, B, (3b)
W By 4 (9 B ) = (15, ), o)

Crank Nicholson:
pr—p"t 1 n n—1 ~ Lo -1\ ~
(T~ (GEE" +eB" ), V) = (5 (ff + £71).B),  (4)

At 2
(3 O 490 ) By (S B - i), VX By = (475 B, )
W B e S v By = G ) B @)
Given: Computed: Given: Computed:
B —— E' — B2 —— B —— - B —— B! — B2 —— B —— -
! S>>
H° ig H? B H° H* H? ‘H“‘




Python Code Fragment

# Crank Nicholson
# Setup the linear system for the solution of p, E and H
S_LHS = sprs.bmat([[1/dt*MO0_g, -SO1_g/2, None],
[-S01_g.T/2, -epsilon/dt*M11_g, mu+S12_g/2],
[None, S12_g.T/2, mu/dt+M22_g]], format='csr')
# Setup right hand side intermediate variables
bp_RHS = b_p/2 + 1/dt*MOO_g*p[time_step - 1] + SO1_g/2+E[time_step - 1]
bE_RHS = -b_E/2 + S01_g.T/2*p[time_step - 1] - epsilon/dt*M11_g+E[time_step - 1]
bH_RHS = b_H/2 - S12_g.T/2+E[time_step - 1] + mu/dt*M22_g+H[time_step - 1]

# Impose boundary conditions

S_LHS[boundary_vertex_indices] = 0

S_LHS[boundary_vertex_indices, boundary_vertex_indices] = 1
S_LHS[NO + boundary_edge_indices] = 0

S_LHS[NO + boundary_edge_indices, NO + boundary_edge_indices] = 1
bp_RHS[boundary_vertex_indices] = p_bc

bE_RHS[boundary_edges] = E_boundary

# Setup the right hand side vector
b_RHS = np.concatenate((bp_RHS, bE_RHS, bH_RHS))

# Obtain the linear system solution for E and H
X = pEH_solver.solve(S_LHS, b_RHS)



2d Numerical Results on Unit Square (Crank-Nicholso
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2d Analytical Results on Unit Square
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3d Numerical Results on Unit Cube (Crank-Nicholson)

Quadratic E at t = 0.000 Quadratic E at t = 0.250 Quadratic E at ¢ = 0.500 Quadratic E att = 0.750 Quadratic E at t = 1.000

Quadratic H at ¢ = 0.000 Quadratic H at t = 0.250 Quadratic H at ¢t = 0.500 Quadratic H at ¢ = 0.750 Quadratic H at t = 1.000




Numerical Results (Energy Plots)

L2 Energy for Maxwell's System L2 Energy for Maxwell's System
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Summary and Other Work

- Here are some more results that we can show for the mentioned Crank-Nicholson
scheme for we have shown results:

Discrete Energy Estimate

IVl + BN + 1EY], < C.

Discrete Error Estimate

leples + leEle + lefl, < C [(At)? + lelles + el + lefl,] -

Full Error Estimate

lepn et + ek, I + e, |, < C[(At)? + A7 + A7 (A1)?].

- For more details, you can refer to our preprint: https://arxiv.org/abs/2310.20310

Thank You!
Questions?Remarks?Thoughts?
archanaa@iiitd.ac.in



