The Correlation of Farey sequence

Bittu

Mathematics Open House
IIIT Delhi
(Based on joint work with Sneha Chaubey)

Farey Sequence

Farey Sequence

Definition

Let Q be a positive integer and denote by \mathcal{F}_{Q} the set of irreducible fractions in $[0,1]$ whose denominator does not exceed Q,

$$
\mathcal{F}_{Q}=\left\{\frac{a}{q}: 0 \leq a \leq q \leq Q,(a, q)=1\right\}
$$

Farey Sequence

Definition

Let Q be a positive integer and denote by \mathcal{F}_{Q} the set of irreducible fractions in $[0,1]$ whose denominator does not exceed Q,

$$
\mathcal{F}_{Q}=\left\{\frac{a}{q}: 0 \leq a \leq q \leq Q,(a, q)=1\right\}
$$

Example

$$
\mathcal{F}_{5}=\left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\} .
$$

Farey Sequence

Definition

Let Q be a positive integer and denote by \mathcal{F}_{Q} the set of irreducible fractions in $[0,1]$ whose denominator does not exceed Q,

$$
\mathcal{F}_{Q}=\left\{\frac{a}{q}: 0 \leq a \leq q \leq Q,(a, q)=1\right\}
$$

Example

$$
\mathcal{F}_{5}=\left\{\frac{0}{1}, \frac{1}{5}, \frac{1}{4}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \frac{1}{1}\right\} .
$$

- The cardinality of \mathcal{F}_{Q}

$$
N(Q)=1+\sum_{q=1}^{Q} \phi(q)=\frac{3 Q^{2}}{\pi^{2}}+\mathrm{O}(Q \log Q)
$$

Properties

Properties

- $\gamma_{i}=\frac{a_{i}}{q_{i}}$ and $\gamma_{i+1}=\frac{a_{i+1}}{q_{i+1}}$ are consecutive fractions in \mathcal{F}_{Q} iff $a_{i+1} q_{i}-a_{i} q_{i+1}=1$ and $q_{i}+q_{i+1}>Q$.

Properties

- $\gamma_{i}=\frac{a_{i}}{q_{i}}$ and $\gamma_{i+1}=\frac{a_{i+1}}{q_{i+1}}$ are consecutive fractions in \mathcal{F}_{Q} iff $a_{i+1} q_{i}-a_{i} q_{i+1}=1$ and $q_{i}+q_{i+1}>Q$.
- If $\gamma_{i}=\frac{a_{i}}{q_{i}}$ is a fraction in \mathcal{F}_{Q} and $\gamma_{i-1}=\frac{a_{i-1}}{q_{i-1}}, \gamma_{i+1}=\frac{a_{i+1}}{q_{i+1}}$ are adjacent fractions of γ_{i} then

$$
\gamma_{i}=\frac{a_{i-1}+a_{i+1}}{q_{i-1}+q_{i+1}} .
$$

Properties

- $\gamma_{i}=\frac{a_{i}}{q_{i}}$ and $\gamma_{i+1}=\frac{a_{i+1}}{q_{i+1}}$ are consecutive fractions in \mathcal{F}_{Q} iff $a_{i+1} q_{i}-a_{i} q_{i+1}=1$ and $q_{i}+q_{i+1}>Q$.
- If $\gamma_{i}=\frac{a_{i}}{q_{i}}$ is a fraction in \mathcal{F}_{Q} and $\gamma_{i-1}=\frac{a_{i-1}}{q_{i-1}}, \gamma_{i+1}=\frac{a_{i+1}}{q_{i+1}}$ are adjacent fractions of γ_{i} then

$$
\gamma_{i}=\frac{a_{i-1}+a_{i+1}}{q_{i-1}+q_{i+1}}
$$

- The pairs of coprime integers $\left(q, q^{\prime}\right)$ with $1 \leq q, q^{\prime} \leq Q$, and $q+q^{\prime}>Q$ are in one to one correspondence with the pairs of consecutive Farey fractions of order Q.

Significance of Farey sequence

Significance of Farey sequence

- [Hurwitz, 1894] used Farey sequence in the rational approximation to irrationals.

Significance of Farey sequence

- [Hurwitz, 1894] used Farey sequence in the rational approximation to irrationals.
- [Hardy and Littlewood, 1924] used Farey sequence in the circle method.

Significance of Farey sequence

- [Hurwitz, 1894] used Farey sequence in the rational approximation to irrationals.
- [Hardy and Littlewood, 1924] used Farey sequence in the circle method.
- [Ford, 1938] constructed the Ford circles using Farey fractions.

Distribution of \mathcal{F}_{Q}

Distribution of \mathcal{F}_{Q}

- [Franel, 1924]

$$
R H \Longleftrightarrow \sum_{j=1}^{N(Q)}|\delta(j)|=\mathrm{O}\left(Q^{1 / 2+\epsilon}\right)
$$

where

$$
\delta(j)=\gamma_{j}-\frac{j}{N(Q)}
$$

Distribution of \mathcal{F}_{Q}

- [Franel, 1924]

$$
R H \Longleftrightarrow \sum_{j=1}^{N(Q)}|\delta(j)|=\mathrm{O}\left(Q^{1 / 2+\epsilon}\right)
$$

where

$$
\delta(j)=\gamma_{j}-\frac{j}{N(Q)} .
$$

- [Landau, 1924]

$$
R H \Longleftrightarrow \sum_{j=1}^{N(Q)} \delta^{2}(j)=\mathrm{O}\left(Q^{-1+\epsilon}\right)
$$

Pair correlation of a sequence

Pair correlation of a sequence

Let \mathcal{F} be a finite set of cardinality N in $[0,1]$. The pair correlation measure $\mathcal{R}_{\mathcal{F}}(I)$ of a finite interval $I \subset \mathbb{R}$ is defined by

$$
\frac{1}{N} \#\left\{(x, y) \in \mathcal{F}^{2}: x \neq y, x-y \in \frac{1}{N} I+\mathbb{Z}\right\}
$$

Pair correlation of a sequence

Let \mathcal{F} be a finite set of cardinality N in $[0,1]$. The pair correlation measure $\mathcal{R}_{\mathcal{F}}(I)$ of a finite interval $I \subset \mathbb{R}$ is defined by

$$
\frac{1}{N} \#\left\{(x, y) \in \mathcal{F}^{2}: x \neq y, x-y \in \frac{1}{N} I+\mathbb{Z}\right\}
$$

The limiting pair correlation measure of an increasing sequence $\left(\mathcal{F}_{n}\right)_{n}$, is given (if it exists) by

$$
\mathcal{R}(I)=\lim _{n \rightarrow \infty} \mathcal{R}_{\mathcal{F}_{n}}(I)
$$

Pair correlation of a sequence

Let \mathcal{F} be a finite set of cardinality N in $[0,1]$. The pair correlation measure $\mathcal{R}_{\mathcal{F}}(I)$ of a finite interval $I \subset \mathbb{R}$ is defined by

$$
\frac{1}{N} \#\left\{(x, y) \in \mathcal{F}^{2}: x \neq y, x-y \in \frac{1}{N} I+\mathbb{Z}\right\}
$$

The limiting pair correlation measure of an increasing sequence $\left(\mathcal{F}_{n}\right)_{n}$, is given (if it exists) by

$$
\mathcal{R}(I)=\lim _{n \rightarrow \infty} \mathcal{R}_{\mathcal{F}_{n}}(I)
$$

If

$$
\mathcal{R}(I)=\int_{I} g(x) d x
$$

then g is called the limiting pair correlation function of $\left(\mathcal{F}_{n}\right)_{n}$.

Montgomery's pair correlation conjecture

Montgomery's pair correlation conjecture

[Montgomery, 1973] conjectured that, for any fixed $\alpha<\beta$,

$$
\begin{aligned}
& N(\beta, T):= \sum_{\substack{0<\gamma, \gamma^{\prime} \leq T \\
\frac{2 \pi \alpha}{\log T} \leq \gamma-\gamma^{\prime} \leq \frac{2 \pi \beta}{\log T}}} 1 \sim \\
& \frac{T \log T}{2 \pi} \int_{\alpha}^{\beta}\left(1-\left(\frac{\operatorname{Sin} \pi u}{\pi u}\right)^{2}\right) d u \\
&+\frac{T \log T}{2 \pi} \delta(\alpha, \beta),
\end{aligned}
$$

where $\delta(\alpha, \beta)=1$ if $0 \in[\alpha, \beta]$ and 0 otherwise.

Pair correlation of Farey fractions

Pair correlation of Farey fractions

Theorem (Boca and Zaharescu, 2005)

The pair correlation function of $\left(\mathcal{F}_{Q}\right)_{Q}$ is given by

$$
g(\lambda)=\frac{6}{\pi^{2} \lambda^{2}} \sum_{1 \leq k<\frac{\pi^{2} \lambda}{3}} \phi(k) \log \frac{\pi^{2} \lambda}{3 k} .
$$

Pair correlation of Farey fractions

Theorem (Boca and Zaharescu, 2005)

The pair correlation function of $\left(\mathcal{F}_{Q}\right)_{Q}$ is given by

$$
g(\lambda)=\frac{6}{\pi^{2} \lambda^{2}} \sum_{1 \leq k<\frac{\pi^{2} \lambda}{3}} \phi(k) \log \frac{\pi^{2} \lambda}{3 k} .
$$

Moreover, as $\lambda \rightarrow \infty$

$$
g(\lambda)=1+\mathrm{O}\left(\lambda^{-1}\right)
$$

Visible lattice points along polynomials

Visible lattice points along polynomials

- For a fixed vector $\left(a_{n}, a_{n-1}, \cdots, a_{1}\right) \in \mathbb{Z}^{n}$ with $a_{n} \neq 0, a_{i} \geq 0$ for all i, and $\operatorname{gcd}\left(a_{n}, a_{n-1}, \cdots, a_{1}\right)=1$, let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x$, we define

$$
V:=\left\{(a, b) \in \mathbb{N}^{2} \left\lvert\, \begin{array}{l}
b=q P(a) \text { for some } q \in \mathbb{Q}^{+}, \nexists\left(a^{\prime}, b^{\prime}\right) \in \mathbb{N}^{2} \\
\text { such that } b^{\prime}=q^{\prime} P\left(a^{\prime}\right), \text { and } a^{\prime}<a, b^{\prime}<b
\end{array}\right.\right\}
$$

Visible lattice points along polynomials

- For a fixed vector $\left(a_{n}, a_{n-1}, \cdots, a_{1}\right) \in \mathbb{Z}^{n}$ with $a_{n} \neq 0, a_{i} \geq 0$ for all i, and $\operatorname{gcd}\left(a_{n}, a_{n-1}, \cdots, a_{1}\right)=1$, let $P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots a_{1} x$, we define

$$
V:=\left\{(a, b) \in \mathbb{N}^{2} \left\lvert\, \begin{array}{l}
b=q P(a) \text { for some } q \in \mathbb{Q}^{+}, \nexists\left(a^{\prime}, b^{\prime}\right) \in \mathbb{N}^{2} \\
\text { such that } b^{\prime}=q^{\prime} P\left(a^{\prime}\right), \text { and } a^{\prime}<a, b^{\prime}<b
\end{array}\right.\right\}
$$

- Denote

$$
S:=\left\{(a, b) \in \mathbb{N}^{2} \mid \operatorname{gcd}\left(a_{n} a^{n}+a_{n-1} a^{n-1}+\cdots a_{1} a, b\right)=1\right\}
$$

Generalized Farey fractions

Define

$$
\mathcal{F}_{Q, P}:=\left\{\left.\frac{a}{q} \right\rvert\, 1 \leq a \leq q \leq Q,(a, q) \in S\right\}
$$

Generalized Farey fractions

Define

$$
\mathcal{F}_{Q, P}:=\left\{\left.\frac{a}{q} \right\rvert\, 1 \leq a \leq q \leq Q,(a, q) \in S\right\}
$$

If $P(x)=x(x+1)$ then for instance

$$
\mathcal{F}_{5, P}=\left\{\frac{1}{5}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, 1\right\}
$$

Generalized Farey fractions

Define

$$
\mathcal{F}_{Q, P}:=\left\{\left.\frac{a}{q} \right\rvert\, 1 \leq a \leq q \leq Q,(a, q) \in S\right\}
$$

If $P(x)=x(x+1)$ then for instance

$$
\mathcal{F}_{5, P}=\left\{\frac{1}{5}, \frac{1}{3}, \frac{2}{5}, \frac{1}{2}, \frac{3}{5}, 1\right\}
$$

The cardinality of $\mathcal{F}_{Q, P}$

$$
\# \mathcal{F}_{Q, P}=\frac{Q^{2}}{2} \prod_{p}\left(1-\frac{f_{a_{n}, a_{n-1}, \ldots, a_{1}}(p)}{p^{2}}\right)+\mathrm{O}\left(Q^{1+\epsilon}\right)
$$

where
$f_{a_{n}, a_{n-1}, \ldots, a_{1}}(m):=\left|\left\{1 \leq d \leq m \mid a_{n} d^{n}+a_{n-1} d^{n-1} \ldots+a_{1} d \equiv 0 \quad(\bmod m)\right\}\right|$.

Pair correlation of Generalized Farey fractions

Theorem (.B, Chaubey, 2023)

Let $c_{1}, c_{2} \in \mathbb{Z}^{+}$and $P(x)=c_{2} x^{2}+c_{1} x$. The limiting pair correlation measure of the sequence $\left(\mathcal{F}_{Q, P}\right)_{Q}$ under the GRH exists and is given by

$$
\mathcal{S}(\Lambda) \ll \frac{\left(c_{1} c_{2}\right)^{\epsilon}}{\beta_{p}^{1+\epsilon}} \int_{0}^{\Lambda} \frac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m<\frac{2 \lambda}{\beta_{p}}} h_{1}(m) \log \left(\frac{2 \lambda}{m \beta_{p}}\right) d \lambda,
$$

Pair correlation of Generalized Farey fractions

Theorem (.B, Chaubey, 2023)

Let $c_{1}, c_{2} \in \mathbb{Z}^{+}$and $P(x)=c_{2} x^{2}+c_{1} x$. The limiting pair correlation measure of the sequence $\left(\mathcal{F}_{Q, P}\right)_{Q}$ under the GRH exists and is given by

$$
\mathcal{S}(\Lambda) \ll \frac{\left(c_{1} c_{2}\right)^{\epsilon}}{\beta_{p}^{1+\epsilon}} \int_{0}^{\Lambda} \frac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m<\frac{2 \lambda}{\beta_{p}}} h_{1}(m) \log \left(\frac{2 \lambda}{m \beta_{p}}\right) d \lambda
$$

for any $\Lambda \geq 0$, where $\beta_{p}=\prod_{p}\left(1-\frac{f_{c_{2}, c_{1}}(p)}{p^{2}}\right)$, and

$$
h_{1}(m)=\frac{1}{m^{\epsilon}} \sum_{\substack{g_{1}\left|m \\ g_{1}\right| c_{1}}} \frac{1}{g_{1}} \sum_{\substack{g_{2}\left|\frac{m}{g_{1}} \\ g_{2}\right| c_{1}}} \frac{1}{g_{2}} \sum_{\delta \left\lvert\, \frac{m}{g_{1} g_{2}}\right.} \frac{1}{\delta}
$$

Pair correlation of Generalized Farey fractions

Theorem (.B, Chaubey, 2023)

Let $c_{1}, c_{2}, \cdots, c_{\alpha} \in \mathbb{Z}$ with $c_{\alpha} \neq 0, c_{i} \geq 0$ and $P(x)=x \mathcal{P}^{\prime}(x)$, where $\mathcal{P}^{\prime}(x)=c_{\alpha} x^{\alpha-1}+\cdots+c_{2} x+1, D=\operatorname{Disc}\left(\mathcal{P}^{\prime}(x)\right)$. The limiting pair correlation measure of the sequence $\left(\mathcal{F}_{Q, P}\right)_{Q}$ under the $G R H$ exists and is given by

$$
\mathcal{S}(\Lambda) \ll \frac{D \alpha^{2 \omega(\alpha)}}{\beta_{p}^{1+\epsilon}} \int_{0}^{\Lambda} \frac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m<\frac{2 \Lambda}{\beta_{p}}} h_{2}(m) \log \left(\frac{2 \lambda}{m \beta_{p}}\right) d \lambda
$$

Pair correlation of Generalized Farey fractions

Theorem (.B, Chaubey, 2023)

Let $c_{1}, c_{2}, \cdots, c_{\alpha} \in \mathbb{Z}$ with $c_{\alpha} \neq 0, c_{i} \geq 0$ and $P(x)=x \mathcal{P}^{\prime}(x)$, where $\mathcal{P}^{\prime}(x)=c_{\alpha} x^{\alpha-1}+\cdots+c_{2} x+1, D=\operatorname{Disc}\left(\mathcal{P}^{\prime}(x)\right)$. The limiting pair correlation measure of the sequence $\left(\mathcal{F}_{Q, P}\right)_{Q}$ under the $G R H$ exists and is given by

$$
\mathcal{S}(\Lambda) \ll \frac{D \alpha^{2 \omega(\alpha)}}{\beta_{p}^{1+\epsilon}} \int_{0}^{\Lambda} \frac{1}{\lambda^{1-\epsilon}} \sum_{1 \leq m<\frac{2 \Lambda}{\beta_{p}}} h_{2}(m) \log \left(\frac{2 \lambda}{m \beta_{p}}\right) d \lambda
$$

for any $\Lambda \geq 0$, where $\beta_{p}=\prod_{p}\left(1-\frac{f_{c_{\alpha}, \cdots, c_{2}, 1}(p)}{p^{2}}\right)$, and

$$
h_{2}(m)=\frac{1}{m^{\epsilon}} \sum_{\delta \mid m} \frac{1}{\delta}
$$

References

[1] F. P. Boca, A. Zaharescu, The correlation of Farey fractions, J. Lond. Math. Soc., 72(2), 2005, 25-39.
[2] H.L. Montgomery, The pair correlation of zeros of the zeta function, in Analytic number theory, (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., Mo., 1972), Amer. Math. Soc., Providence, R.I., 1973, 181-193.
[3] C. Cobeli, A. Zaharescu, The Haros-Farey sequence at two hundred years, Acta Univ. Apulensis Math. Inform., 5, 2003, 1-38.

Thank You!

