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Farey Sequence

Definition

Let Q be a positive integer and denote by FQ the set of irreducible
fractions in [0, 1] whose denominator does not exceed Q,

FQ =

{
a

q
: 0 ≤ a ≤ q ≤ Q, (a, q) = 1

}
.

Example

F5 =

{
0

1
,
1

5
,
1

4
,
1

3
,
2

5
,
1

2
,
3

5
,
2

3
,
3

4
,
4

5
,
1

1

}
.

• The cardinality of FQ

N(Q) = 1 +
Q∑

q=1

ϕ(q) =
3Q2

π2
+O(Q logQ) .
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Properties

• γi =
ai
qi

and γi+1 =
ai+1

qi+1
are consecutive fractions in FQ iff

ai+1qi − aiqi+1 = 1 and qi + qi+1 > Q.

• If γi =
ai
qi

is a fraction in FQ and γi−1 =
ai−1

qi−1
, γi+1 =

ai+1

qi+1
are

adjacent fractions of γi then

γi =
ai−1 + ai+1

qi−1 + qi+1
.

• The pairs of coprime integers (q, q′) with 1 ≤ q, q′ ≤ Q, and
q + q′ > Q are in one to one correspondence with the pairs of
consecutive Farey fractions of order Q.
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Significance of Farey sequence

• [Hurwitz, 1894] used Farey sequence in the rational approximation to
irrationals.

• [Hardy and Littlewood, 1924] used Farey sequence in the circle
method.

• [Ford, 1938] constructed the Ford circles using Farey fractions.
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Distribution of FQ

• [Franel, 1924]

RH ⇐⇒
N(Q)∑
j=1

|δ(j)| = O
(
Q1/2+ϵ

)
where

δ(j) = γj −
j

N(Q)
.

• [Landau, 1924]

RH ⇐⇒
N(Q)∑
j=1

δ2(j) = O
(
Q−1+ϵ

)
.
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Pair correlation of a sequence

Let F be a finite set of cardinality N in [0, 1]. The pair correlation
measure RF (I ) of a finite interval I ⊂ R is defined by

1

N
#{(x , y) ∈ F2 : x ̸= y , x − y ∈ 1

N
I + Z}.

The limiting pair correlation measure of an increasing sequence (Fn)n, is
given (if it exists) by

R(I ) = lim
n→∞

RFn(I ).

If

R(I ) =

∫
I
g(x)dx ,

then g is called the limiting pair correlation function of (Fn)n.
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Montgomery’s pair correlation conjecture

[Montgomery, 1973] conjectured that, for any fixed α < β,

N(β,T ) :=
∑

0<γ,γ′≤T
2πα
log T

≤γ−γ′≤ 2πβ
log T

1 ∼T logT

2π

∫ β

α

(
1−

(
Sinπu

πu

)2
)
du

+
T logT

2π
δ(α, β),

where δ(α, β) = 1 if 0 ∈ [α, β] and 0 otherwise.
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Pair correlation of Farey fractions

Theorem (Boca and Zaharescu, 2005)

The pair correlation function of (FQ)Q is given by

g(λ) =
6

π2λ2

∑
1≤k<π2λ

3

ϕ(k) log
π2λ

3k
.

Moreover, as λ → ∞
g(λ) = 1 + O

(
λ−1

)
.
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Visible lattice points along polynomials

• For a fixed vector (an, an−1, · · · , a1) ∈ Zn with an ̸= 0, ai ≥ 0 for all i ,
and gcd(an, an−1, · · · , a1) = 1, let P(x) = anx

n + an−1x
n−1 + · · · a1x ,

we define

V :=

{
(a, b) ∈ N2

∣∣∣∣ b = qP(a) for some q ∈ Q+, ∄ (a′, b′) ∈ N2

such that b′ = q′P(a′), and a′ < a, b′ < b

}

• Denote

S := {(a, b) ∈ N2| gcd(ana
n + an−1a

n−1 + · · · a1a, b) = 1}
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Generalized Farey fractions

Define

FQ,P :=

{
a

q
| 1 ≤ a ≤ q ≤ Q, (a, q) ∈ S

}
.

If P(x) = x(x + 1) then for instance

F5,P =

{
1

5
,
1

3
,
2

5
,
1

2
,
3

5
, 1

}
.

The cardinality of FQ,P

#FQ,P =
Q2

2

∏
p

(
1−

fan,an−1,...,a1(p)

p2

)
+O

(
Q1+ϵ

)
,

where

fan,an−1,...,a1(m) := |{1 ≤ d ≤ m| andn+an−1d
n−1...+a1d ≡ 0 (mod m)}|.
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Pair correlation of Generalized Farey fractions

Theorem (.B, Chaubey, 2023)

Let c1, c2 ∈ Z+ and P(x) = c2x
2 + c1x . The limiting pair correlation

measure of the sequence (FQ,P)Q under the GRH exists and is given by

S(Λ) ≪ (c1c2)
ϵ

β1+ϵ
p

∫ Λ

0

1

λ1−ϵ

∑
1≤m< 2λ

βp

h1(m) log

(
2λ

mβp

)
dλ,

for any Λ ≥ 0, where βp =
∏

p

(
1− fc2,c1 (p)

p2

)
, and

h1(m) =
1

mϵ

∑
g1|m
g1|c1

1

g1

∑
g2| mg1
g2|c1

1

g2

∑
δ| m

g1g2

1

δ
.
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Pair correlation of Generalized Farey fractions

Theorem (.B, Chaubey, 2023)

Let c1, c2, · · · , cα ∈ Z with cα ̸= 0, ci ≥ 0 and P(x) = xP ′(x), where
P ′(x) = cαx

α−1 + · · ·+ c2x + 1, D = Disc(P ′(x)). The limiting pair
correlation measure of the sequence (FQ,P)Q under the GRH exists and is
given by

S(Λ) ≪ Dα2ω(α)

β1+ϵ
p

∫ Λ

0

1

λ1−ϵ

∑
1≤m< 2Λ

βp

h2(m) log

(
2λ

mβp

)
dλ,

for any Λ ≥ 0, where βp =
∏

p

(
1− fcα,··· ,c2,1(p)

p2

)
, and

h2(m) =
1

mϵ

∑
δ|m

1

δ
.
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Thank You!
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