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Satffman-Taylor Instability (STI)

= Less viscous fluid pushes more viscous fluid through a narrow channel (a Hele-Shaw cell),
forming finger like patterns at the interface referred to as viscous fingering phenomenon.

(a) Pure Fluid (b)

Tul
Transparent glass plate Low viscous fluid
Air wy w High viscous fhuid

A= wg/w [ 1 /| Gap'd’

Relative finger width

STI in a Hele-Shaw cell

= Problem first Studied by Saffman-Taylor at low Re ( Math. and Phys. Sc. 245 (1958) ) and
analytical shape of the interface was given.

(ﬁ?e finger-like complex structures are a prototype for interfacial pattern generation J




Industrial Applications

» Viscous fingering instabilities have received
prolonged interest in theoretical and experimental

studies as well as industry due to its vast practical
applicability in

= Recovery of oil/gas from the earth: Oil Industry

= Cleaning up oil spill in ocean: Oil-Spill Clean-up COZ-EOR
» Hydrology and filtration

» Dendrite/crystal formation

» Fixed bed regeneration: Chemical processing

* Fingering effect in porous media: Petroleum
engineering literature

Dendrite & Crystal formation



Finger Selection Mechanism

Finger width (w)
Channel Width (W)

» The relative finger width (1= ) 1is

determined by the dimensionless Capillary
parameter:

Viscous forces tend to narrow the finger
Ca = Viscous Force

Capillary Force
Capillary forces tend to widen the finger

» For large Ca, A reaches a limiting (stable) value of
about (A=0.5).

» The analytical expression for the shape of the
finger (without surface tension) 1s given by
Mc.Lean & Saffman in 1981:

x=w(12;l)lnl2(1+cos( ))l 0<41<0.5

But it fails to explain the the
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Shear-Thinning and Shear-thickening phenomena

» An analytical expression derived
via a single, unified theory
explaining both these features has
remained elusive.



Analysis: Mathematical Model



Governing Equation & Model Formulation
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2
Modified Darcy’s Law: u = — - Vp,V.u=20
12 u(y)
The wviscosity of the non-Newtonian fluid:
u@) = poy™?
. . . ) - 12u
Harmonicity of p gives: p = — V7

¢ — Velocity potential
) — Stream Function (harmonic conjugate of ¢)
F = ¢ + iy — Complex analytic function.

Boundary conditions on ¢ and p are:

n.u = U sinf .
7 ¢ on the advancing finger
Po—P = 3

uy,= 0 onthewalls:y = +w
usz/l,uyzo asx > 00,—-wy<w
Uy =Uy, =0 asx » —oo,—wA < |y|<w

Advancing Finger

—— This approximates the
solution of the differential equation
whose  highest  derivative  1is
multiplied by a small parameter &.

~* The solution 1s of the form of
an asymptotic series expansion.



Integro-Differential Equation

(1—n) :
Vo ! | qs d gt "s i =q — cosf,

1 V!

S f(s :

logg=—-P / ; (, ) ds’, s€ |0, 1],
m Jo s'(s"—s)

The Boundary Conditions:

0(0)=0, ¢(0)=1, 6(1)=-n/2, q(1)=0,

T} 2.2
Where, /= e |
Y0 = T2poUw2(1-A)2 "



Results

>

A~

The leading order term (zero surface
tension) vo = 0 gives an explicit solution
but fails to determine a unique value of A.

Our main result is the following proposition,

providing us with a unique solution for the
system of equations in the limit

Proposition: In the limit , (q,9)
satisfying the equations along with the
boundary conditions has a unique solution
provided A satisfies the following relation
(accurate unto the leading order in vy),

1

% — O(VO_E), n<1,l<%,

_+0(v043—n), n21,1>;,

for shear thinning

=

for shear thickening

N

> Solvability Theory: Consider & € C*™(R)
and a differential operator L such that,

LO =R

Where, R € L}(R). Let O, be the null
eigenvector of the adjoint of £, or ®, € N(LT).

Further define the cusp function, C € L'(R),
such that

¢ = f dn®y R(n)

If ® exists uniquely, then € = 0 (E. Corvera
1995).

» A good agreement is found near the power-
law exponent, n = 1 (Hong & Langer 1986).

Source: Ghosh D. et al., SIAM J. on Appl. Math., 83(2), 329-353(2023)




Numerical and Experimental Validation

DISPERSION RELATION

The dispersion relation in a rectilinear
channel for the power law fluids can be
expressed as:

w = iU[a — Ba3w?]

EXPERIMENTAL OBSERVATION

A reasonably good agreement is found
between the experimental data, the one
computed with the linearized model (i.e.
Atemp) and the theoretical estimates of our

results, for large values of 1/B.

= Existence of the most unstable temporal

mode obtained by setting

dw
@ =0 = atemp = ((1)V3B)_1

= The relative finger width of the

advancing interface,

2T

)ltemp — Teemp
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Finger width as a function of 1/B for solutions of (a) Xanthane for concentrations
of S0 ppm (O) 100 ppm (L)), 500 ppm (~), 1000 ppm ( ), and at fixed cell
geometry, w = 2.0cm and b = 0.25mm , (b) Xanthane at different cell geometries,
w=2.0cm and b =0.66mm (O),w=2.0cm and b=0.25mm ( ), w=4.0cm and
b = 0.5mm (2), w = 4.0cm and b = 0.25mm (1), and at fixed concentration of
1000 ppm, (c) PEO for concentrations of 5 ppm (O), 50 ppm (1), 500 ppm (2),
and at fixed cell geometry, w = 2.0cm and b = 0.5mm. (----) predictions from the
linear stability analysis. (—) predictions from the theoretical estimate.



Conclusion

An analytical treatment of predicting the Saffman-Taylor fingers for a class of non-
Newtonian fluids is provided.

A systematic description i1s provided here for the singular perturbation introduced by the
viscous and the capillary forces leads to a solvability mechanism for pattern selection.

Our results extend the classical results for Newtonian fluids of Hong and Langer (1986),
Shraiman (1986) and Combescot et al. (1986) mm=) in the limit of small v,

A future endeavour is the perturbative expansion of the model via the radius of the fingertip
to explain the selection mechanism for strong shear thinning fluids.

In our analysis, WKB expansion and conformal mapping technique had been used. So, the
next aim 1s to derive similar result using other conformal mapping technique, such as
generalised Polubarinova-Galin equation.
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