Selection Mechanism in Non-Newtonian Saffman-Taylor Fingers

Mathematics Open House

Dipa Ghosh

Advisor: Dr. Sarthok Sircar Research Scholar (UGC-SRF) Department Of Mathematics, IIIT Delhi

Viscous fingering

dipag@iiitd.ac.in

Newtonian Vs Non-Newtonian

Oil/Gas Recovery, CO2-EOR

https://www.researchgate.net/profile/Dipa-Ghosh-2

Introduction

0

Mathematical Model

Experimental and Numerical Validation

Introduction

Saffman-Taylor Instability (STI)

• Less viscous fluid pushes more viscous fluid through a narrow channel (a Hele-Shaw cell), forming finger like patterns at the interface referred to as viscous fingering phenomenon.

 Problem first Studied by Saffman-Taylor at low Re (Math. and Phys. Sc. 245 (1958)) and analytical shape of the interface was given.

The finger-like complex structures are a **prototype for interfacial pattern generation**

Industrial Applications

- Viscous fingering instabilities have received prolonged interest in theoretical and experimental studies as well as industry due to its vast practical applicability in
 - Recovery of oil/gas from the earth: Oil Industry
 - Cleaning up oil spill in ocean: Oil-Spill Clean-up
 - Hydrology and filtration
 - Dendrite/crystal formation
 - Fixed bed regeneration: Chemical processing
 - Fingering effect in porous media: Petroleum engineering literature

Oil Industry: Oil/Gas recovery, CO2-EOR

Oil spill cleanup

Dendrite & Crystal formation

Finger Selection Mechanism

 $Ca = \frac{Viscous\ Force}{Capillary\ Force}$

The relative finger width $(\lambda = \frac{Finger \ width \ (w)}{Channel \ Width \ (w)})$ is determined by the dimensionless Capillary parameter: Viscous forces tend to narrow the finger

Capillary forces tend to widen the finger

- For large Ca, λ reaches a limiting (stable) value of about half the channel width ($\lambda = 0.5$).
- The analytical expression for the shape of the finger (without surface tension) is given by Mc.Lean & Saffman in 1981:

$$x = \frac{w(1-\lambda)}{2\pi} \ln\left[\frac{1}{2}\left(1+\cos\left(\frac{2\pi y}{\lambda w}\right)\right)\right], 0 < \lambda < 0.5$$

But it fails to explain the the specific selection of the relative finger width $\lambda = 0.5$.

Shear-Thinning and Shear-thickening phenomena

- A shear thinning or shear thickening polymeric liquid reveal a strong modification of the finger selection process.
- An analytical expression derived via a single, unified theory explaining both these features has remained elusive.

Analysis: Mathematical Model

Governing Equation & Model Formulation

- > Modified Darcy's Law: $\boldsymbol{u} = -\frac{b^2}{12 \,\mu(\dot{\gamma})} \nabla p$, $\nabla \boldsymbol{u} = 0$
- > The viscosity of the non-Newtonian fluid: $\mu(\dot{\gamma}) = \mu_0 \dot{\gamma}^{n-1}$
- > Harmonicity of p gives: $p = -\frac{12\mu}{b^2}\phi$
 - $\phi \rightarrow$ Velocity potential
 - $\psi \rightarrow$ Stream Function (harmonic conjugate of ϕ)
 - $\mathcal{F} = \phi + i\psi \rightarrow$ Complex analytic function.
- > Boundary conditions on ϕ and p are:

 $n. u = U \sin \tilde{\theta}$ $p_0 - p = \frac{T}{R}$ on the advancing finger $u_y = 0 \text{ on the walls: } y = \pm w$ $u_x = U\lambda, u_y = 0 \text{ as } x \to \infty, -w < y < w$ $u_x = u_y = 0 \text{ as } x \to -\infty, -w\lambda < |y| < w$

Advancing Finger

> WKB approximation:

 \rightarrow This approximates the solution of the differential equation whose highest derivative is multiplied by a small parameter ϵ .

The solution is of the form of an asymptotic series expansion.

Integro-Differential Equation

$$\begin{split} \nu_0 \left\{ \frac{1}{b(1-\Lambda)} \right\}^{(1-n)} qs \frac{d}{ds} \left(q^{(2-n)} s \frac{d\theta}{ds} \right) &= q - \cos \theta, \\ \log q &= -\frac{s}{\pi} \mathcal{P} \int_0^1 \frac{\theta(s')}{s'(s'-s)} ds', \qquad s \in [0, \ 1], \end{split}$$

The Boundary Conditions:

$$\theta(0)=0, \quad q(0)=1, \quad \theta(1)=-\pi/2, \quad q(1)=0,$$

Where,
$$u_0 = \frac{T b^2 \pi^2}{12 \mu_0 U w^2 (1-\Lambda)^2}.$$

Results

- > The leading order term (zero surface tension) $v_0 = 0$ gives an explicit solution but fails to determine a **unique** value of λ .
- ➤ Our main result is the following proposition, providing us with a unique solution for the system of equations in the limit $v_0 \rightarrow 0$:
- ➤ Proposition: In the limit $\nu_0 \rightarrow 0$, (q,θ) satisfying the equations along with the boundary conditions has a unique solution provided λ satisfies the following relation (accurate unto the leading order in ν_0),

 $\lambda \sim \begin{cases} \frac{1}{2} - \mathcal{O}\left(\nu_0^{-\frac{1}{2}}\right), & n < 1, \lambda < \frac{1}{2}, \\ \frac{1}{2} + \mathcal{O}\left(\nu_0^{\frac{2}{4-n}}\right), & n \ge 1, \lambda > \frac{1}{2}, \end{cases} for shear thinking for shear thickening$

Solvability Theory: Consider $\Theta \in C^{\infty}(\mathbb{R})$ and a differential operator \mathcal{L} such that,

 $\mathcal{L}\Theta = \overline{R}$

Where, $\overline{R} \in L^1(\mathbb{R})$. Let Θ_0 be the null eigenvector of the adjoint of \mathcal{L} , or $\Theta_0 \in N(\mathcal{L}^{\dagger})$. Further define the cusp function, $C \in L^1(\mathbb{R})$, such that

$$C = \int_{-\infty}^{\infty} d\eta \Theta_0 \,\overline{R}(\eta)$$

If Θ exists uniquely, then $C \equiv 0$ (E. Corvera 1995).

➤ A good agreement is found near the powerlaw exponent, n = 1 (Hong & Langer 1986).

Source: Ghosh D. et al., SIAM J. on Appl. Math., 83(2), 329-353(2023)

Numerical and Experimental Validation

DISPERSION RELATION

The dispersion relation in a rectilinear channel for the power law fluids can be expressed as:

$$\omega = iU[\alpha - B\alpha^3 w^2]$$

 $B(\dot{\gamma}) = \frac{Tb^2}{12\mu(\dot{\gamma})Uw^2}$: Control parameter.

Concludes

- Existence of the most unstable temporal mode obtained by setting $\frac{d\omega}{d\alpha} = 0 \implies \alpha_{temp} = (\omega\sqrt{3B})^{-1}$
- The relative finger width of the advancing interface,

$$\lambda_{temp} = \frac{2\pi}{\alpha_{temp}}$$

EXPERIMENTAL OBSERVATION

A reasonably good agreement is found between the experimental data, the one computed with the linearized model (i.e. λ_{temp}) and the theoretical estimates of our results, for large values of 1/B.

Finger width as a function of 1/B for solutions of (a) Xanthane for concentrations of 50 ppm (O) 100 ppm (), 500 ppm (\triangle), 1000 ppm (), and at fixed cell geometry, w = 2.0cm and b = 0.25mm, (b) Xanthane at different cell geometries, w = 2.0cm and b = 0.66mm (O), w = 2.0cm and b = 0.25mm (), w = 4.0cm and b = 0.5mm (\triangle), w = 4.0cm and b = 0.25mm (), and at fixed concentration of 1000 ppm, (c) PEO for concentrations of 5 ppm (O), 50 ppm (), 500 ppm (\triangle), and at fixed cell geometry, w = 2.0cm and b = 0.5mm. (----) predictions from the linear stability analysis. (----) predictions from the theoretical estimate.

Conclusion

- An analytical treatment of predicting the Saffman-Taylor fingers for a class of non-Newtonian fluids is provided.
- A systematic description is provided here for the singular perturbation introduced by the viscous and the capillary forces leads to a solvability mechanism for pattern selection.
- Our results extend the classical results for Newtonian fluids of Hong and Langer (1986), Shraiman (1986) and Combescot et al. (1986) \implies in the limit of small ν_0 , $\lambda - \frac{1}{2} \sim \nu_0^{2/3}$.
- A future endeavour is the perturbative expansion of the model via the radius of the fingertip to explain the selection mechanism for **strong shear thinning fluids**.
- In our analysis, WKB expansion and conformal mapping technique had been used. So, the next aim is to derive similar result using other conformal mapping technique, such as generalised Polubarinova-Galin equation.

Publications/Preprints

- D. Bansal, D. Ghosh, S. Sircar; Selection mechanism in non-Newtonian Saffman-Taylor fingers. SIAM Journal on Applied Mathematics; 83(2): 329-353 (2023). <u>https://doi.org/10.1137/22M1485838</u>
- D. Ghosh, T. Chauhan, S. Sircar; Implicit-explicit time integration method for fractional advection-reactiondiffusion equations (under review (2023)). https://doi.org/10.48550/arXiv.2301.06507
- D. Bansal, D. Ghosh, S. Sircar; Spatiotemporal linear stability of viscoelastic free shear flows: Nonaffine response regime. *Physics of Fluids*; 33(5): 054106 (2021). <u>https://doi.org/10.1063/5.0049504</u>

THANK YOU QUESTIONS?

dipag@iiitd.ac.in

https://www.researchgate.net/profile/Dipa-Ghosh-2