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Contradictions

Contradictions are important.
In fact, in many cases, they are quite informative!
Suppose if we ask a yes-no question to two people: ”Does the
person A live at place B?”
Exactly one of the three following distinct scenarios is possible:

1 They might both say ’yes’.

2 They might both say ’no’.

3 One of them might say ’yes’ while the other says ’no’.

In no situation we can be sure whether A lives at B or not , but
only in the last scenario where a contradiction appears, we are
sure to have received wrong information from one of the
sources.
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Some Rules and Definitions

Given a set For of formulas,
a consequence relation over For, ⊢⊆ P(For)× For
and a logic L, L =< For ,⊢>
Any set Γ ⊆ For is called a theory of L.
Let Γ be a theory of L.
Γ is contradictory if:
∃α(Γ ⊢ α and Γ ⊢ ¬α)
A theory Γ is trivial if :
∀α(Γ ⊢ α)
A theory Γ is explosive if:
∀α∀β(Γ, α,¬α ⊢ β)
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L is trivial if all of its theories are trivial.
L is contradictory if all of its theories are contradictory.
L is explosive if all of its theories are explosive.
(Reflexivity)
α ∈ Γ implies Γ ⊢ α.
(Monotonicity)
(∆ ⊢ α and ∆ ⊆ Γ) implies Γ ⊢ α.
(Transitivity/Cut for Sets)
For all α ∈ ∆, Γ ⊢ α and ∆ ⊢ β implies Γ ⊢ β.
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Paraconsistent Logic

Principle of Explosion (L is explosive)
∀Γ∀α∀β(Γ, α, ¬α ⊢ β)

A logic is paraconsistent if Principle of Explosion fails,i.e.,
∃Γ∃α∃β(Γ, α, ¬α ⊬ β)
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Application of Paraconsistent
Logic

Suppose we have constructed a computer system to manage
traffic lights. Because it is important to know that whether
traffic lights are functioning properly, we might attach a sensor
to the traffic lights to determine whether it is functioning
properly or not.
But sensors eventually break so we might want to add a second
sensor as a backup to the first.
Now if one of the sensors does break, it seems that our system
may well receive a message from one sensor, saying that the
light is functioning and from the other receive message saying
that light is not functioning.
Now if we have programmed our computer to use classical
logic, we are in trouble at this point. But if we have written
our code using paraconsistent logic, we are safe.
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Gentle Principle of Explosion

Let ⃝(p) be a set of formulas (possibly empty) which depends
only on the propositional variable p, satisfying the following:
There are formulas α and β such that
⃝(α), α ⊬ β;
⃝(α), ¬α ⊬ β.
(Here , ⃝(ϕ) = {ψ(ϕ) : ψ(p) ∈ ⃝(p)})
Then:
A theory Γ is gently explosive (with respect to ⃝(p)) if:
∀α ∀β (Γ,⃝(α), α,¬α ⊢ β)
A logic L is said to be gently explosive when there is a set
⃝(p) such that all the theories of L are gently explosive (with
respect to ⃝(p)).
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Definition

A Logic of Formal Inconsistency (LFI) is any gently explosive
paraconsistent logic, that is, any logic in which explosion
does not hold good while gentle explosion holds good.
In other words, a logic L is an LFI ( with respect to a negation
¬ ) if:

1 ∃ Γ ∃α ∃β (Γ, α,¬α ⊬ β) and
2 there exists a set of formulas ⃝(p) such that

∀Γ ∀α ∀β (Γ,⃝(α), α,¬α ⊢ β)
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mbC(a basic LFI)

1 ’bC’ stands for basic property of consistency.

2 It is an extension of classical positive propositional
logic.

3 It has sound and complete bivalued semantics.

4 ◦A and ¬(A ∧ ¬A) are not equivalent where A is some
formula i.e. consistency and non-contradiction are not
equivalent in mbC.
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Syntax

Let L1 be a language with a denumerable set of sentence
symbols {p1, p2, p3...}, the set of connectives {◦,¬,∧,∨,→}
and parentheses. The set of formulas of L1 is obtained
recursively in the usual way. The logic mbC is defined over the
language L1 by the following axiom schemas:

Axiom 1 A → (B → A)

Axiom 2 (A → (B → C )) → ((A → B) → (A → C ))

Axiom 3 A → (B → (A ∧ B))

Axiom 4 (i) (A ∧ B) → A (ii) (A ∧ B) → B

Axiom 5 (i) A → (A ∨ B) (ii) B → (A ∨ B)

Axiom 6 (A → C ) → ((B → C ) → ((A ∨ B) → C ))

Axiom 7 A ∨ (A → B)

Axiom 8 A ∨ ¬A
Axiom(bc1) ◦A → (A → (¬A → B))
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...Continued

Inference Rule: Modus Ponens
Positive Classical propositional logic, CPL+ is given by Axioms
1-7 plus Modus ponens.
Due to Axiom (bc1), mbC is gently explosive.
For some A and B:
A, ¬A ⊬ B,
◦A, A ⊬ B,
◦A, ¬A ⊬ B
While for every A and B :
◦A, A, ¬A ⊢ B
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Semantics for mbC

1 An mbC valuation v : For → {0, 1} (over L1) satisfies the
following:

2.1 v(A ∧ B) = 1 iff v(A) = 1 and v(B) = 1.
2.2 v(A ∨ B) = 1 iff v(A) = 1 or v(B) = 1.
2.3 v(A → B) = 1 iff v(A) = 0 or v(B) = 1.
2.4 v(¬A) = 0 implies v(A) = 1.
2.5 v(◦A) = 1 implies v(A) = 0 or v(¬A) = 0

2 Logical consequence is defined as follows:
Γ ⊨mbC A iff for every valuation v , for all B ∈ Γ, v(B) = 1
implies v(A) = 1.
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Here, we can think of 0 and 1 not as false and true (respt.) but
rather as absence and presence of evidence.

1 v(A) = 1 means ’there is evidence that A is true’.

2 v(A) = 0 means ’there is no evidence that A is true’.

3 v(¬A) = 1 means ’there is evidence that A is false’.

4 v(¬A) = 0 means ’there is no evidence that A is false’.

Suppose, in particular, we take the case
v(A) = 1, v(¬A) = 0 or (vice versa) and v(◦A) = 0.
Then v(¬(A ∧ ¬A)) = 1 , hence ◦A and ¬(A ∧ ¬A) are not
equivalent.
mbC is sound and complete.
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