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Talk Overview

• Finite Element Method for 1d and 2d Poisson’s Equation. Physical
significance and characteristics of Poisson’s Equation.

• Understand the weak formulation via 1d Poisson’s Equation by
considering a Test function in a finite dimensional space.

• Examples of Basis functions.
• A problem solved via FEM.
• A prior and a posteriori error estimates for 2d Poisson’s Equation.
• What is Adaptive Finite Element Method?
• Example of an a posteriori error estimate for AFEM.
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Finite Element Method for Poisson’s Equation

• Poisson’s equation is a partial differential equation (PDE) that helps model
physical phenomena like heat conduction, electrostatic fields, and fluid flow.

• A numerical method to solve such a PDE is the finite element method (FEM).

• In FEM, we compute a Galerkin or weak formulation of the PDE by taking an
inner product and seeking equality for arbitrary choices of functions.

• FEM becomes computational by selecting the spaces for choosing these
functions to be finite dimensional ones.

• A basis is constructed locally using a discretization of the problem domain

• The local basis are glued together with some continuity conditions to ensure a
piecewise approximation of the solution
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Understanding the Weak Formulation via 1d Poisson’s Equation

−𝑢″(𝑥) = 𝑓(𝑥), −1 < 𝑥 < 1, 𝑢(−1) = 𝑢(1) = 0.

• Standard Weak Formulation
1

∫
−1

−𝑢″(𝑥)𝑣(𝑥)𝑑𝑥 =
1

∫
−1

𝑓(𝑥)𝑣(𝑥)𝑑𝑥, for all 𝑣 ∈ 𝑉

where 𝑉 is space of functions in 𝐿2(−1, 1) whose first derivative is also in
𝐿2(−1, 1) and 𝑣(−1) = 0 = 𝑣(1).

⟹
1

∫
−1

𝑢′(𝑥)𝑣′(𝑥)𝑑𝑥 −������[𝑢′(𝑥)𝑣(𝑥)]
1

−1
=

1

∫
−1

𝑓(𝑥)𝑣(𝑥)𝑑𝑥

⟹
1

∫
−1

𝑢′(𝑥)𝑣′(𝑥)𝑑𝑥 =
1

∫
−1

𝑓(𝑥)𝑣(𝑥)𝑑𝑥, for all 𝑣 ∈ 𝑉
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Understanding the Finite Element Method via 1d Poisson’s Equation

• Weak formulation:
1

∫
−1

𝑢′(𝑥)𝑣′(𝑥)𝑑𝑥 =
1

∫
−1

𝑓(𝑥)𝑣(𝑥)𝑑𝑥, for all 𝑣 ∈ 𝑉

• Finite – finite subspace 𝑉ℎ of 𝑉
• Element – 𝑉ℎ basis compactly supported.
• Galerkin’s method – seek 𝑢 ∈ 𝑉ℎ as well.

• Need finite 𝑉ℎ ⊂ 𝑉 :
• Divide (−1, 1) into subintervals,

• Pick {𝜙𝑖} with compact support; 𝜙𝑖(𝑥𝑗) = {1 𝑖 = 𝑗
0 𝑖 ≠ 𝑗

.

⟹ ∑
𝑗, 𝑖

1

∫
−1

𝑢𝑗 𝜙′
𝑗(𝑥) 𝜙′

𝑖(𝑥)𝑣𝑖𝑑𝑥 = ∑
𝑖

1

∫
−1

𝑓(𝑥)𝜙𝑖(𝑥)𝑣𝑖 𝑑𝑥

⟹ ∑
𝑗, 𝑖

1

∫
−1

𝑢𝑗𝜙′
𝑗(𝑥)𝜙′

𝑖(𝑥)𝑣𝑖𝑑𝑥 = ∑
𝑘, 𝑖

1

∫
−1

𝑓𝑘𝜙𝑘(𝑥)𝜙𝑖(𝑥)𝑣𝑖𝑑𝑥

• Resulting finite dimensional problem: 𝐾𝑢 = 𝑀𝑓
• {𝜙𝑖} usually piecewise polynomials; simplest is linears. 5



Finite Element Method for 2d Poisson’s Equation

− div grad 𝑢 = 𝑓 on Ω ⊆ ℝ2 and 𝑢 = 0 on 𝜕Ω.

• If 𝑓 ∈ 𝐿2(Ω), then 𝑢 ∈ 𝐻2(Ω) in the strong form of PDE
• Weak Formulation: Using inner product and integration by parts we seek 𝑢 ∈ �̊�1(Ω)
such that:

⟨grad 𝑢, grad 𝑣⟩ − ⟨grad 𝑢 ⋅ 𝑛, 𝑣⟩𝜕Ω = ⟨𝑓, 𝑣⟩
for all 𝑣 ∈ �̊�1(Ω) and where 𝑛 is the unit outward normal at the boundary 𝜕Ω.

• Boundary conditions: The boundary conditions may be nonhomogeneous (≠ 0) or
homogeneous (= 0), and can be of the following different kinds:

Dirichlet: 𝑢∣𝜕Ω = 𝑔𝜕Ω

Neumann: 𝜕𝑢
𝜕𝑥 ∣

𝜕Ω
= ℎ𝜕Ω

Robin: 𝛼𝑢∣𝜕Ω + 𝛽 𝜕𝑢
𝜕𝑥 ∣

𝜕Ω
= ℓ𝜕Ω

• Galerkin Finite Element Formulation: Pick a finite dimensional 𝑉ℎ ⊆ �̊�1(Ω)
• Resulting finite dimensional problem: 𝐴𝑢 = 𝑏
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Examples of Basis Functions in 1d

Linear

Quadratic

𝑥𝑖 𝑥𝑖+1

𝑥𝑖 𝑥𝑖+1

𝑥𝑖 𝑥𝑖+1
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Examples of Basis Functions in 2d

Linear

Quadratic
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An illustration: Solving 1d Poisson’s Equation using FEM

We sought to solve the following 1-D Poisson’s Equation using FEM:

−𝑢″ = −𝜋2 sin(𝜋𝑥)
with homogeneous Dirichlet boundary conditions as u(0)=u(1)=0 where Ω = [0, 1]
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Apriori Error Estimate

• Let 𝒦 be a triangulation of Ω
• Let 𝑉ℎ be the space of continuous piecewise linears on 𝒦
• From the variational formulation, we obtain the following finite element method:
find 𝑢ℎ ∈ 𝑉ℎ,0 such that:

∫
Ω

∇𝑢ℎ ⋅ ∇𝑣 𝑑𝑥 = ∫
Ω

𝑓𝑣𝑑𝑥, ∀𝑣 ∈ 𝑉ℎ,0 (1)

• The finite element solution 𝑢ℎ defined by (1) then satisfies the estimate:

‖𝑢 − 𝑢ℎ‖𝐿2(Ω) = 𝐶ℎ2‖𝐷2𝑢‖𝐿2(Ω)
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A Posteriori Error Estimate

• A posteriori error estimates for a computed solution provide insights into where
the solution has a large error even if a true solution is not known

• It can thus be used for an adaptive refinement of a computed solution by
modifying (usually by refinement) the triangulation where the error is large

• Now, the ∇𝑢ℎ of the continuous piecewise linear finite element solution 𝑢ℎ is
generally a discontinuous piecewise constant vector.

• Thus, when moving orthogonally across the boundary of one element to a
neighbouring element, there is a jump in the normal derivative 𝑛 ⋅ ∇𝑢ℎ.

• This jump is denoted as [𝑛 ⋅ ∇𝑢ℎ] and plays a key role in a posteriori error analysis.
• The finite element solution 𝑢ℎ, defined by (1), satisfies the estimate:

|||𝑢 − 𝑢ℎ|||2 ≤ 𝐶 ∑
𝐾∈𝒦

𝜂2
𝑘(𝑢ℎ)

• And the element residual 𝜂𝐾(𝑢ℎ) is defined by:

𝜂𝐾(𝑢ℎ) = ℎ𝐾‖𝑓 + 𝑢ℎ‖𝐿2(𝐾) + 1
2ℎ1/2

𝐾 ‖[𝑛 ⋅ ∇𝑢ℎ]‖𝐿2( 𝜕𝐾
𝜕Ω )
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Adaptive Finite Element Method

• An adaptive finite element method (AFEM) is used in the numerical solution of
partial differential equations by strategically improving the computational
solution in an a posteriori manner by identifying subregions where the solution
has a potentially large error.

• Adaptivity refers to use of a computational loop of the form:

SOLVE ⟶ ESTIMATE ⟶ MARK ⟶ REFINE

• One chooses to use a proxy indicator function for the error and in regions with a
large error, we improve the solution approximation by either refining the
underlying simplicial mesh or by raising the degree of a polynomial
approximation to a suitably higher order.
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Example of an a posteriori error estimate

Problem: −𝑢″ + 𝑢 = 𝑓, on [0, 1], 𝑢(0) = 𝑢(1) = 0.
A Posteriori Error Estimate: The finite element solution 𝑢ℎ for this problem will satisfy
the following estimate:

||𝑢 − 𝑢ℎ||2𝐻1 ≤ 𝐶
𝑛

∑
𝑖=1

ℎ2
𝑖 ||𝑓 − 𝑢ℎ + 𝑢″

ℎ||2,

where the element residual 𝜂(𝑢ℎ) is given by:

𝜂(𝑢ℎ) = ℎ𝑖||𝑓 − 𝑢ℎ||𝐻1(𝐼𝑖).

Future: We plan on working with developing and computing with a posteriori error
estimators for the Poisson’s equation in 2d and 3d in the immediate future in
conjunction with higher order finite elements.
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Thank You!


