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Talk Overview

- Finite Element Method for 1d and 2d Poisson’s Equation. Physical
significance and characteristics of Poisson’s Equation.

- Understand the weak formulation via 1d Poisson’s Equation by
considering a Test function in a finite dimensional space.

- Examples of Basis functions.

- A problem solved via FEM.

- A prior and a posteriori error estimates for 2d Poisson’s Equation.
- What is Adaptive Finite Element Method?

- Example of an a posteriori error estimate for AFEM.



Finite Element Method for Poisson’s Equation

- Poisson’s equation is a partial differential equation (PDE) that helps model
physical phenomena like heat conduction, electrostatic fields, and fluid flow.

- A numerical method to solve such a PDE is the finite element method (FEM).

- In FEM, we compute a Galerkin or weak formulation of the PDE by taking an
inner product and seeking equality for arbitrary choices of functions.

- FEM becomes computational by selecting the spaces for choosing these
functions to be finite dimensional ones.
- A basis is constructed locally using a discretization of the problem domain
- The local basis are glued together with some continuity conditions to ensure a
piecewise approximation of the solution



Understanding the Weak Formulation via 1d Poisson’s Equation
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/—u”(:ﬁ)v(:c)dx = /f(x)v(x)dz, forallveV
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where V is space of functions in L?(—1,1) whose first derivative is also in
L2(—1,1) and v(—1) = 0 = v(1).
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Understanding the Finite Element Method via 1d Poisson’s Equation

- Weak formulation:
1

/u’(m)v/(m)dx = /f(x)v(x)dx, forallveV
=

- Finite - finite subspace V}, of V/

- Element -V}, basis compactly supported.

- Galerkin's method - seek u € V}, as well.
- Need finite V;, C V:

- Divide (—1,1) into subintervals,

1 i=j
- Pick {¢;} with compact support; ¢;(z;) = { ‘=

ﬁz/“ st ”dI:Z./ﬂxm(x)vidx
= ;I/ u; ()i (x)v;da = kz / Fetn(@ Yorda

- Resulting finite dimensional problem: Ku = Mf
- {¢,} usually piecewise polynomials; simplest is linears. 5



Finite Element Method for 2d Poisson’s Equation

—divgradu=f on QCR? and wu=00noN.

- If f € L%(Q), then u € H2(Q) in the strong form of PDE
- Weak Formulation: Using inner product and integration by parts we seek u € H!()
such that:
(grad wu,grad v) — (grad u-n,v)yq = (f,v)
for all v € H'(Q2) and where 7 is the unit outward normal at the boundary 9.
- Boundary conditions: The boundary conditions may be nonhomogeneous (s 0) or
homogeneous (= 0), and can be of the following different kinds:
Dirichlet: u|aQ = gsn

Neumann:

Robin: au|, +B+—| ={yq
o0 ox
o0

- Galerkin Finite Element Formulation: Pick a finite dimensional V;, C H'(Q)
- Resulting finite dimensional problem: Au = b




Examples of Basis Functions in 1d
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Examples of Basis Functions in 2d

Linear
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Quadratic




An illustration: Solving 1d Poisson’s Equation using FEM

We sought to solve the following 1-D Poisson’s Equation using FEM:
—u” = —n?sin(7x)
with homogeneous Dirichlet boundary conditions as u(0)=u(1)=0 where Q = [0, 1]

Solution of 1d Poisson using Linear FEM with n =40
— computed u
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Solution of 1d Poisson using Linear FEM with n =160 L2 error in the computed solution
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Apriori Error Estimate

- Let X be a triangulation of Q
- Let V, be the space of continuous piecewise linears on X
- From the variational formulation, we obtain the following finite element method:

find u;, € V}, o such that:

=

/Vu,,/ -Vodx = /fvd:l:, Yv €V, (1
Q Q '

- The finite element solution u, defined by (1) then satisfies the estimate:

u— uhHL2(Q) = ChZHD2uHL2(Q)



A Posteriori Error Estimate

- A posteriori error estimates for a computed solution provide insights into where
the solution has a large error even if a true solution is not known

- It can thus be used for an adaptive refinement of a computed solution by
modifying (usually by refinement) the triangulation where the error is large

- Now, the Vu,, of the continuous piecewise linear finite element solution w,, is
generally a discontinuous piecewise constant vector.

- Thus, when moving orthogonally across the boundary of one element to a
neighbouring element, there is a jump in the normal derivative n - Vu,,.

- This jump is denoted as [n - Vu,,] and plays a key role in a posteriori error analysis.

- The finite element solution u,, defined by (1), satisfies the estimate:

N —upll2 < C > nd(uy)
KeX

- And the element residual ny (u;) is defined by:

1. 12
N (up) = hgl f + UhHL?(K) + §h1</ I - V“h}HLz(%>



Adaptive Finite Element Method

- An adaptive finite element method (AFEM) is used in the numerical solution of
partial differential equations by strategically improving the computational
solution in an a posteriori manner by identifying subregions where the solution
has a potentially large error.

- Adaptivity refers to use of a computational loop of the form:

SOLVE — ESTIMATE — MARK — REFINE

- One chooses to use a proxy indicator function for the error and in regions with a
large error, we improve the solution approximation by either refining the
underlying simplicial mesh or by raising the degree of a polynomial
approximation to a suitably higher order.



Example of an a posteriori error estimate

Problem: —u” +u=f, on|0,1], u(0)=u(l)=0.

A Posteriori Error Estimate: The finite element solution w,, for this problem will satisfy
the following estimate:

n
llu—wpllfn < C YO REIF —up + ]2,
=1

i=

where the element residual n(u,) is given by:
n(up) = hs||f — uhHHl(Ii)'

Future: We plan on working with developing and computing with a posteriori error
estimators for the Poisson’s equation in 2d and 3d in the immediate future in
conjunction with higher order finite elements.
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