Adaptive Finite Element Method

Bridging the Gap in Computational Modeling

Ishani Choudhary
ishanic@iiitd.ac.in
November 28, 2023

DEPARTMENT OF
MATHEMATICS

Talk Overview

- Finite Element Method for 1d and 2d Poisson's Equation. Physical significance and characteristics of Poisson's Equation.
- Understand the weak formulation via 1d Poisson's Equation by considering a Test function in a finite dimensional space.
- Examples of Basis functions.
- A problem solved via FEM.
- A prior and a posteriori error estimates for 2d Poisson's Equation.
- What is Adaptive Finite Element Method?
- Example of an a posteriori error estimate for AFEM.

Finite Element Method for Poisson's Equation

- Poisson's equation is a partial differential equation (PDE) that helps model physical phenomena like heat conduction, electrostatic fields, and fluid flow.
- A numerical method to solve such a PDE is the finite element method (FEM).
- In FEM, we compute a Galerkin or weak formulation of the PDE by taking an inner product and seeking equality for arbitrary choices of functions.
- FEM becomes computational by selecting the spaces for choosing these functions to be finite dimensional ones.
- A basis is constructed locally using a discretization of the problem domain
- The local basis are glued together with some continuity conditions to ensure a piecewise approximation of the solution

Understanding the Weak Formulation via 1d Poisson's Equation

$$
-u^{\prime \prime}(x)=f(x), \quad-1<x<1, \quad u(-1)=u(1)=0
$$

- Standard Weak Formulation

$$
\int_{-1}^{1}-u^{\prime \prime}(x) v(x) d x=\int_{-1}^{1} f(x) v(x) d x, \quad \text { for all } v \in V
$$

where V is space of functions in $L^{2}(-1,1)$ whose first derivative is also in $L^{2}(-1,1)$ and $v(-1)=0=v(1)$.

$$
\begin{aligned}
& \Longrightarrow \int_{-1}^{1} u^{\prime}(x) v^{\prime}(x) d x-\left[u^{\prime}(x) v(x)\right]_{-1}^{1}=\int_{-1}^{1} f(x) v(x) d x \\
& \Longrightarrow \int_{-1}^{1} u^{\prime}(x) v^{\prime}(x) d x=\int_{-1}^{1} f(x) v(x) d x, \quad \text { for all } v \in V
\end{aligned}
$$

Understanding the Finite Element Method via 1d Poisson's Equation

- Weak formulation:

$$
\int_{-1}^{1} u^{\prime}(x) v^{\prime}(x) d x=\int_{-1}^{1} f(x) v(x) d x, \quad \text { for all } v \in V
$$

- Finite - finite subspace V_{h} of V
- Element - V_{h} basis compactly supported.
- Galerkin's method - seek $u \in V_{h}$ as well.
- Need finite $V_{h} \subset V$:
- Divide $(-1,1)$ into subintervals,
- Pick $\left\{\phi_{i}\right\}$ with compact support; $\phi_{i}\left(x_{j}\right)=\left\{\begin{array}{ll}1 & i=j \\ 0 & i \neq j\end{array}\right.$.

$$
\begin{aligned}
& \Longrightarrow \sum_{j, i} \int_{-1}^{1} u_{j} \phi_{j}^{\prime}(x) \phi_{i}^{\prime}(x) v_{i} d x=\sum_{i} \int_{-1}^{1} f(x) \phi_{i}(x) v_{i} d x \\
& \Longrightarrow \sum_{j, i} \int_{-1}^{1} u_{j} \phi_{j}^{\prime}(x) \phi_{i}^{\prime}(x) v_{i} d x=\sum_{k, i} \int_{-1}^{1} f_{k} \phi_{k}(x) \phi_{i}(x) v_{i} d x
\end{aligned}
$$

- Resulting finite dimensional problem: $K u=M f$
- $\left\{\phi_{i}\right\}$ usually piecewise polynomials; simplest is linears.

Finite Element Method for 2d Poisson's Equation

$$
-\operatorname{div} \operatorname{grad} u=f \quad \text { on } \Omega \subseteq \mathbb{R}^{2} \quad \text { and } \quad u=0 \text { on } \partial \Omega
$$

- If $f \in L^{2}(\Omega)$, then $u \in H^{2}(\Omega)$ in the strong form of PDE
- Weak Formulation: Using inner product and integration by parts we seek $u \in \dot{H}^{1}(\Omega)$ such that:

$$
\langle\operatorname{grad} u, \operatorname{grad} v\rangle-\langle\operatorname{grad} u \cdot n, v\rangle_{\partial \Omega}=\langle f, v\rangle
$$

for all $v \in \dot{H}^{1}(\Omega)$ and where n is the unit outward normal at the boundary $\partial \Omega$.

- Boundary conditions: The boundary conditions may be nonhomogeneous $(\neq 0)$ or homogeneous $(=0)$, and can be of the following different kinds:

Dirichlet: $\left.u\right|_{\partial \Omega}=g_{\partial \Omega}$
Neumann: $\left.\frac{\partial u}{\partial x}\right|_{\partial \Omega}=h_{\partial \Omega}$
Robin: $\left.\alpha u\right|_{\partial \Omega}+\left.\beta \frac{\partial u}{\partial x}\right|_{\partial \Omega}=\ell_{\partial \Omega}$

- Galerkin Finite Element Formulation: Pick a finite dimensional $V_{h} \subseteq \dot{H}^{1}(\Omega)$
- Resulting finite dimensional problem: $A u=b$

Linear

Quadratic

Examples of Basis Functions in 2d

Linear

Quadratic

An illustration: Solving 1d Poisson's Equation using FEM

We sought to solve the following 1-D Poisson's Equation using FEM:

$$
-u^{\prime \prime}=-\pi^{2} \sin (\pi x)
$$

with homogeneous Dirichlet boundary conditions as $u(0)=u(1)=0$ where $\Omega=[0,1]$

Apriori Error Estimate

- Let \mathcal{K} be a triangulation of Ω
- Let V_{h} be the space of continuous piecewise linears on \mathcal{K}
- From the variational formulation, we obtain the following finite element method: find $u_{h} \in V_{h, 0}$ such that:

$$
\begin{equation*}
\int_{\Omega} \nabla u_{h} \cdot \nabla v d x=\int_{\Omega} f v d x, \quad \forall v \in V_{h, 0} \tag{1}
\end{equation*}
$$

- The finite element solution u_{h} defined by (1) then satisfies the estimate:

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)}=C h^{2}\left\|D^{2} u\right\|_{L^{2}(\Omega)}
$$

A Posteriori Error Estimate

- A posteriori error estimates for a computed solution provide insights into where the solution has a large error even if a true solution is not known
- It can thus be used for an adaptive refinement of a computed solution by modifying (usually by refinement) the triangulation where the error is large
- Now, the ∇u_{h} of the continuous piecewise linear finite element solution u_{h} is generally a discontinuous piecewise constant vector.
- Thus, when moving orthogonally across the boundary of one element to a neighbouring element, there is a jump in the normal derivative $n \cdot \nabla u_{h}$.
- This jump is denoted as $\left[n \cdot \nabla u_{h}\right]$ and plays a key role in a posteriori error analysis.
- The finite element solution u_{h}, defined by (1), satisfies the estimate:

$$
\left\|\left\|u-u_{h}\right\|\right\|^{2} \leq C \sum_{K \in \mathcal{K}} \eta_{k}^{2}\left(u_{h}\right)
$$

- And the element residual $\eta_{K}\left(u_{h}\right)$ is defined by:

$$
\eta_{K}\left(u_{h}\right)=h_{K}\left\|f+u_{h}\right\|_{L^{2}(K)}+\frac{1}{2} h_{K}^{1 / 2}\left\|\left[n \cdot \nabla u_{h}\right]\right\|_{L^{2}\left(\frac{\partial K}{\partial \Omega}\right)}
$$

Adaptive Finite Element Method

- An adaptive finite element method (AFEM) is used in the numerical solution of partial differential equations by strategically improving the computational solution in an a posteriori manner by identifying subregions where the solution has a potentially large error.
- Adaptivity refers to use of a computational loop of the form:

$$
\text { SOLVE } \longrightarrow \text { ESTIMATE } \longrightarrow \text { MARK } \longrightarrow \text { REFINE }
$$

- One chooses to use a proxy indicator function for the error and in regions with a large error, we improve the solution approximation by either refining the underlying simplicial mesh or by raising the degree of a polynomial approximation to a suitably higher order.

Example of an a posteriori error estimate

Problem: $-u^{\prime \prime}+u=f, \quad$ on $[0,1], \quad u(0)=u(1)=0$.
A Posteriori Error Estimate: The finite element solution u_{h} for this problem will satisfy the following estimate:

$$
\left\|u-u_{h}\right\|_{H^{1}}^{2} \leq C \sum_{i=1}^{n} h_{i}^{2}\left\|f-u_{h}+u_{h}^{\prime \prime}\right\|^{2}
$$

where the element residual $\eta\left(u_{h}\right)$ is given by:

$$
\eta\left(u_{h}\right)=h_{i}\left\|f-u_{h}\right\|_{H^{1}\left(I_{i}\right)} .
$$

Future: We plan on working with developing and computing with a posteriori error estimators for the Poisson's equation in 2d and 3d in the immediate future in conjunction with higher order finite elements.

Thank You!

