Character analogues of Ramanujan's identities

KHYATI (Joint work with Debika Banerjee) Department of Mathematics, IIIT Delhi

KHYATI (Joint work with Debika Banerj Character analogues of Ramanujan's iden November 25, 2023 1/14

Ramanujan's Entry

• On page 253 in his lost notebook, *Ramanujan* recorded fascinating identities involving K-Bessel functions.

Entry 1

If α and β are any two positive numbers such that $\alpha\beta=\pi^2$ and ν is any complex number, then

$$\begin{split} &\sqrt{\alpha} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu/2} K_{\nu/2}(2n\alpha) - \sqrt{\beta} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu/2} K_{\nu/2}(2n\beta) \\ &= \frac{1}{4} \Gamma\left(\frac{\nu}{2}\right) \zeta(\nu) \{\beta^{(1-\nu)/2} - \alpha^{(1-\nu)/2} \} \\ &+ \frac{1}{4} \Gamma\left(-\frac{\nu}{2}\right) \zeta(-\nu) \{\beta^{(1+\nu)/2} - \alpha^{(1+\nu)/2} \}, \end{split}$$
(1)

where $\sigma_{-\nu}(n) = \sum_{d|n} d^{-\nu}$ and $K_{\nu}(z)$ denotes the modified Bessel function of order ν .

Koshliakov's Work

- Later, in 1955, *Guinand* derived a formula almost similar to (1) by appealing to a formula due to *Watson* involving the *K*-Bessel function.
- Letting $\nu \to 0$ in (1), we obtain

Koshliakov's identity

If α and β are any two positive numbers such that $\alpha\beta=\pi^2,$ then

$$\sqrt{\alpha} \left(\frac{1}{4} \gamma - \frac{1}{4} \log(4\beta) + \sum_{n=1}^{\infty} d(n) K_0(2n\alpha) \right)$$
$$= \sqrt{\beta} \left(\frac{1}{4} \gamma - \frac{1}{4} \log(4\alpha) + \sum_{n=1}^{\infty} d(n) K_0(2n\beta) \right), \qquad (2)$$

 Koshliakov, in 1929, proved the formula (2) by employing Voronoï summation formula.

Voronoï's Work

Voronoï summation formula:

Let f(x) is a function of bounded variation in (a, b) with 0 < a < b, and $K_0(z)$ is modified bessel function of order 0, and $Y_{\nu}(z)$ denotes the Weber-Bessel function of order ν . Then

$$\sum_{a \le n \le b} {}^{\prime} d(n) f(n) = \int_{a}^{b} (\log(x) + 2\gamma) f(x) dx + \sum_{n=1}^{\infty} d(n) \int_{a}^{b} f(x) \left(4K_{0}(4\pi\sqrt{nx}) - 2\pi Y_{0}(4\pi\sqrt{nx}) \right) dx,$$
(3)

where γ is the Euler-Mascheroni constant.

the prime ' on the summation of the left-hand side implies that if a or b is an integer, only f(a)/2 or f(b)/2 is counted, respectively.

Koshliakov's formula for twisted divisor sum

- In 2014, *B. C. Berndt, S. Kim and A. Zaharescu* studied character analogues of Koshliakov's formula (2) for even characters.
- They replaced the classical divisor function d(n) with the twisted divisor sums, namely,

$$d_{\chi}(n) = \sum_{d|n} \chi(d), \qquad \quad d_{\chi_1,\chi_2}(n) = \sum_{d|n} \chi_1(d)\chi_2(n/d),$$

where χ, χ_1 and χ_2 are the Dirichlet characters.

Let χ be a non-principal even primitive character mod q. Then for $\Re(z)>0$

$$\frac{qL(1,\chi)}{4\tau(\chi)} + \sum_{n=1}^{\infty} d_{\chi}(n) \mathcal{K}_{0}\left(\frac{2\pi nz}{\sqrt{q}}\right) = \frac{\sqrt{q}L(1,\chi)}{4z} + \frac{\tau(\chi)}{z\sqrt{q}} \sum_{n=1}^{\infty} d_{\bar{\chi}}(n) \mathcal{K}_{0}\left(\frac{2\pi n}{z\sqrt{q}}\right)$$

where $K_0(z)$ is modified bessel function of order 0, and $Y_{\nu}(z)$ denotes the Weber-Bessel function of order ν and $\tau(\chi)$ is the Gauss sum.

Continued..

- For even real character χ , they established the positivity of $L(1, \chi)$, which is instrumental in proving Dirichlet's theorem on primes in arithmetic progressions.
- Later, *S. Kim* extended the definition of twisted divisor sums to twisted sums of divisor functions, namely,

$$\sigma_{k,\chi}(n) := \sum_{d|n} d^k \chi(d), \quad \bar{\sigma}_{k,\chi}(n) := \sum_{d|n} d^k \chi(n/d),$$
$$\sigma_{k,\chi_1,\chi_2}(n) := \sum_{d|n} d^k \chi_1(d) \chi_2(n/d). \tag{4}$$

- They studied Riesz sum-type identities associated with them.
- Recently, *A. Dixit and A. Kesarwani* studied a new generalization of the modified Bessel function of the second kind. They derived a formula analogous to (1) associated with the generalized Bessel function.
- They proved that their formula is equivalent to the functional equation of a non-holomorphic Eisenstein series on SL(2,ℤ) → (Ξ) → (Ξ) → (Ξ)

KHYATI (Joint work with Debika Baner] Character analogues of Ramanujan's iden

Cohen's Work

 The study of the infinite series in (1) is of prime importance as it is intimately connected with the Fourier series expansion of non-holomorphic Eisenstein series on SL(2, Z)) or Maass wave forms.

Cohen's identity

For
$$\nu \notin \mathbb{Z}$$
 such that $\Re(\nu) \ge 0$ and any integer N such that
 $N \ge \lfloor \frac{\Re(\nu)+1}{2} \rfloor$, then
 $8\pi x^{\frac{\nu}{2}} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu/2} K_{\nu}(4\pi\sqrt{nx}) = -\frac{\Gamma(\nu)\zeta(\nu)}{(2\pi)^{\nu-1}} + \frac{\Gamma(1+\nu)\zeta(1+\nu)}{\pi^{\nu+1}2^{\nu}x}$
 $+ \left\{ \frac{\zeta(\nu)x^{\nu-1}}{\sin\left(\frac{\pi\nu}{2}\right)} + \frac{2}{\sin\left(\frac{\pi\nu}{2}\right)} \sum_{j=1}^{N} \zeta(2j) \zeta(2j-\nu)x^{2j-1} -\pi \frac{\zeta(\nu+1)x^{\nu}}{\cos(\frac{\pi\nu}{2})} + \frac{2}{\sin\left(\frac{\pi\nu}{2}\right)} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) \frac{x^{2N+1}}{(n^2-x^2)} (n^{\nu-2N}-x^{\nu-2N}) \right\}.$ (5)

B. C. Berndt, A. Dixit, A. Roy, and A. Zaharescu Work

• In 2017, B. C. Berndt, A. Dixit, A. Roy, and A. Zaharescu, in their seminal work, showed that Cohen-type identity (5) can be used to derive the Voronoï-type summation formula for $\sigma_s(n)$.

Voronoï summation formula for $\sigma_s(n)$

Let $0 < \alpha < \beta$ and $\alpha, \beta \notin \mathbb{Z}$. Let f denote a function analytic inside a closed contour strictly containing $[\alpha, \beta]$. Assume that $-\frac{1}{2} < \Re(\nu) < \frac{1}{2}$. Then

$$\sum_{\alpha < j < \beta} \sigma_{-\nu}(j) f(j) = \int_{\alpha}^{\beta} f(t) \left(\zeta(1-\nu,\chi) \ t^{-\nu} + \zeta(\nu+1) \right) dt$$
$$+ 2\pi \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu/2} \int_{\alpha}^{\beta} f(t)(t)^{-\frac{\nu}{2}} \left\{ \left(\frac{2}{\pi} K_{\nu}(4\pi\sqrt{nt}) - Y_{\nu}(4\pi\sqrt{nt}) \right) \cos\left(\frac{\pi\nu}{2}\right) \right.$$
$$- J_{\nu}(4\pi\sqrt{nt}) \sin\left(\frac{\pi\nu}{2}\right) \right\} dt.$$

(B)

- ∢ /⊐ ►

3

Identites involving generalised divisor function

• Let us define the generalized divisor function

$$\sigma_z^{(r)}(n) = \sum_{d^r \mid n} d^z \tag{6}$$

9/14

• In 2022, *D. Banerjee and B.Maji* recently studied the infinite series involving the generalised divisor function and the modified *K*-Bessel functions.

Let $r \in \mathbb{Z}, z \in \mathbb{C}$ and a and x be any two positive real numbers,

$$\sum_{n=1}^{\infty} \sigma_z^{(r)}(n) n^{\frac{\nu}{2}} K_{\nu}(a\sqrt{nx}),$$

where ν is a complex number with $\Re(\nu) \ge 0$.

- It is important to note that $\sigma_z^{(1)}(n) = \sigma_z(n)$.
- Hence, almost all the Cohen-type identities can be derived from their results.

Identities associated with $\sigma_{\nu,\chi}(n)$ for odd characters **Thm 1 [Banerjee-K, Advance in Applied Mathematics, 2023]** Let *k* be an even, non-negative integer and χ be an odd primitive Dirichlet character modulo *q*. Then, for any $\Re(\nu) > 0$,

$$\sum_{n=1}^{\infty} \sigma_{k,\chi}(n) n^{\frac{\nu}{2}} \mathcal{K}_{\nu}(a\sqrt{nx}) = \delta_k \frac{2^{\nu+1}}{a^{\nu+2}} \Gamma(1+\nu) \mathcal{L}(1,\chi) x^{-\frac{\nu}{2}-1} + \frac{(-1)^{\frac{k}{2}} i q^k}{a^{\nu} 2^{k+2-\nu} \pi^{k+1}} \Gamma(\nu) \tau(\chi) \Gamma(k+1) \mathcal{L}(k+1,\bar{\chi}) x^{-\frac{\nu}{2}} - \frac{(-1)^{\frac{k}{2}} i a^{\nu} q^{\nu+k} x^{\frac{\nu}{2}}}{2^{3\nu+k+2} \pi^{2\nu+k+1}} \Gamma(\nu+k+1) \tau(\chi) \sum_{n=1}^{\infty} \frac{\bar{\sigma}_{k,\bar{\chi}}(n)}{\left(n+\frac{a^2 qx}{16\pi^2}\right)^{\nu+k+1}}$$

where δ_k is given by

$$\delta_k = \begin{cases} 1, & \text{if } k = 0, \\ 0, & \text{if } k > 0. \end{cases}$$

KHYATI (Joint work with Debika Banerj Character analogues of Ramanujan's iden

10/14

The result corresponding to $\nu = 0$:

Theorem 2 [Banerjee-K, 2023]

Let k be an even, non-negative integer and χ be an odd primitive Dirichlet character modulo q. Then

$$\sum_{n=1}^{\infty} \sigma_{k,\chi}(n) K_0(a\sqrt{nx}) = \delta_k \frac{2}{a^2 x} L(1,\chi) - \frac{L(-k,\chi)}{4} \left(\log\left(\frac{8\pi}{a^2}\right) + \frac{L'(-k,\chi)}{L(-k,\chi)} - 2\gamma \right) + \frac{L(-k,\chi)}{4} \log x + (-1)^{\frac{k}{2}} \frac{ik! q^k}{2(2\pi)^{k+1}} \tau(\chi) \sum_{n=1}^{\infty} \bar{\sigma}_{k,\bar{\chi}}(n) \left(\frac{1}{n^{k+1}} - \frac{1}{(n + \frac{a^2 qx}{16\pi^2})^{k+1}}\right)$$
(8)
where δ_k is defined in (7).

Positivity of $L(1, \chi)$

Let us assume that χ is a real odd primitive Dirichlet character modulo q. Now setting k = 0 and then employing the functional equation in (8)

Result correspondence to k = 0

$$\sum_{n=1}^{\infty} d_{\chi}(n) K_{0}(a\sqrt{nx}) = \frac{L(1,\chi)}{x} \left(\frac{2}{a^{2}} - \frac{i\tau(\chi)}{4\pi} x \log x\right) - \frac{L(0,\chi)}{4} \left(\log\left(\frac{8\pi}{a^{2}}\right) + \frac{L'(0,\chi)}{L(0,\chi)} - 2\gamma\right) + \frac{ia^{2}q x}{64\pi^{3}} \tau(\chi) \sum_{n=1}^{\infty} \frac{d_{\bar{\chi}}(n)}{n(n + \frac{a^{2}qx}{16\pi^{2}})}.$$
 (9)

• Recall some facts on $K_0(x)$:

$$K_0(x) = \int_0^\infty e^{-x \cosh t} dt,$$

Positivity of $L(1, \chi)$ Continued.

- Let us examine the left-hand side of (9).
 - From the integral representation of K₀(x), we obtain K₀(x) is positive and monotonically decreasing on the interval (0,∞).
 - The series representation of $K_0(x)$ is defined as

$$K_0(x) = -\log\left(\frac{x}{2}\right) I_0(x) + \sum_{m=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2m}}{(m!)^2} \frac{\Gamma'(m+1)}{\Gamma(m+1)},$$

where $I_0(x)$ is the Bessel function of the imaginary argument.

- From its series representation mentioned above, one can infer that $K_0(x)$ tends to $+\infty$ as x decreases to 0.
- Hence, the left-hand side of (9) approaches $+\infty$ as x decreases to 0.
- Now, we examine the right-hand side of (9).
 - iτ(χ) is real for real odd primitive Dirichlet character, we can easily deduce that the infinite series on the right-hand side of (9) tends to 0 as x decreases to 0.
 - $i\tau(\chi)$ is real and $x \log x$ tends to 0 as x decreases to 0, we infer that $\frac{L(1,\chi)}{L(1,\chi)}$ tends to $+\infty$ as x decreases to 0,
- Solution Hence the strict positivity of $L(1, \chi)$ is proved.

Thank You!

(a)

3