Character analogues of Ramanujan's identities

KHYATI
(Joint work with Debika Banerjee)
Department of Mathematics, IIIT Delhi

WEPARTMENT OF $\begin{aligned} & \text { DEPATHEMATICS } \\ & \text { MAT }\end{aligned}$

Mathematics Open House
November 25, 2023

Ramanujan's Entry

(1) On page 253 in his lost notebook, Ramanujan recorded fascinating identities involving K -Bessel functions.

Entry 1

If α and β are any two positive numbers such that $\alpha \beta=\pi^{2}$ and ν is any complex number, then

$$
\begin{align*}
& \sqrt{\alpha} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu / 2} K_{\nu / 2}(2 n \alpha)-\sqrt{\beta} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu / 2} K_{\nu / 2}(2 n \beta) \\
& =\frac{1}{4} \Gamma\left(\frac{\nu}{2}\right) \zeta(\nu)\left\{\beta^{(1-\nu) / 2}-\alpha^{(1-\nu) / 2}\right\} \\
& +\frac{1}{4} \Gamma\left(-\frac{\nu}{2}\right) \zeta(-\nu)\left\{\beta^{(1+\nu) / 2}-\alpha^{(1+\nu) / 2}\right\}, \tag{1}
\end{align*}
$$

where $\sigma_{-\nu}(n)=\sum_{d \mid n} d^{-\nu}$ and $K_{\nu}(z)$ denotes the modified Bessel function of order ν.

Koshliakov's Work

- Later, in 1955, Guinand derived a formula almost similar to (1) by appealing to a formula due to Watson involving the K-Bessel function.
- Letting $\nu \rightarrow 0$ in (1), we obtain

Koshliakov's identity

If α and β are any two positive numbers such that $\alpha \beta=\pi^{2}$, then

$$
\begin{align*}
& \sqrt{\alpha}\left(\frac{1}{4} \gamma-\frac{1}{4} \log (4 \beta)+\sum_{n=1}^{\infty} d(n) K_{0}(2 n \alpha)\right) \\
& =\sqrt{\beta}\left(\frac{1}{4} \gamma-\frac{1}{4} \log (4 \alpha)+\sum_{n=1}^{\infty} d(n) K_{0}(2 n \beta)\right) \tag{2}
\end{align*}
$$

- Koshliakov, in 1929, proved the formula (2) by employing Voronoï summation formula.

Voronoï's Work

Voronoï summation formula:

Let $f(x)$ is a function of bounded variation in (a, b) with $0<a<b$, and $K_{0}(z)$ is modified bessel function of order 0 , and $Y_{\nu}(z)$ denotes the Weber-Bessel function of order ν. Then

$$
\begin{align*}
\sum_{a \leq n \leq b}{ }^{\prime} d(n) f(n) & =\int_{a}^{b}(\log (x)+2 \gamma) f(x) d x \\
& +\sum_{n=1}^{\infty} d(n) \int_{a}^{b} f(x)\left(4 K_{0}(4 \pi \sqrt{n x})-2 \pi Y_{0}(4 \pi \sqrt{n x})\right) d x \tag{3}
\end{align*}
$$

where γ is the Euler-Mascheroni constant.

- the prime' on the summation of the left-hand side implies that if a or b is an integer, only $f(a) / 2$ or $f(b) / 2$ is counted, respectively.

Koshliakov's formula for twisted divisor sum

- In 2014, B. C. Berndt, S. Kim and A. Zaharescu studied character analogues of Koshliakov's formula (2) for even characters.
- They replaced the classical divisor function $d(n)$ with the twisted divisor sums, namely,

$$
d_{\chi}(n)=\sum_{d \mid n} \chi(d), \quad d_{\chi_{1}, \chi_{2}}(n)=\sum_{d \mid n} \chi_{1}(d) \chi_{2}(n / d),
$$

where χ, χ_{1} and χ_{2} are the Dirichlet characters.
Let χ be a non-principal even primitive character $\bmod q$. Then for $\Re(z)>0$
$\frac{q L(1, \chi)}{4 \tau(\chi)}+\sum_{n=1}^{\infty} d_{\chi}(n) K_{0}\left(\frac{2 \pi n z}{\sqrt{q}}\right)=\frac{\sqrt{q} L(1, \chi)}{4 z}+\frac{\tau(\chi)}{z \sqrt{q}} \sum_{n=1}^{\infty} d_{\bar{\chi}}(n) K_{0}\left(\frac{2 \pi n}{z \sqrt{q}}\right)$
where $K_{0}(z)$ is modified bessel function of order 0 , and $Y_{\nu}(z)$ denotes the Weber-Bessel function of order ν and $\tau(\chi)$ is the Gauss sum.

Continued.

- For even real character χ, they established the positivity of $L(1, \chi)$, which is instrumental in proving Dirichlet's theorem on primes in arithmetic progressions.
- Later, S. Kim extended the definition of twisted divisor sums to twisted sums of divisor functions, namely,

$$
\begin{align*}
\sigma_{k, \chi}(n):= & \sum_{d \mid n} d^{k} \chi(d), \quad \bar{\sigma}_{k, \chi}(n):=\sum_{d \mid n} d^{k} \chi(n / d), \\
& \sigma_{k, \chi_{1}, \chi_{2}}(n):=\sum_{d \mid n} d^{k} \chi_{1}(d) \chi_{2}(n / d) \tag{4}
\end{align*}
$$

- They studied Riesz sum-type identities associated with them.
- Recently, A. Dixit and A. Kesarwani studied a new generalization of the modified Bessel function of the second kind. They derived a formula analogous to (1) associated with the generalized Bessel function.
- They proved that their formula is equivalent to the functional equation of a non-holomorphic Eisenstein series on $S L(2, \mathbb{Z})$.

Cohen's Work

- The study of the infinite series in (1) is of prime importance as it is intimately connected with the Fourier series expansion of non-holomorphic Eisenstein series on $S L(2, \mathbb{Z})$) or Maass wave forms.

Cohen's identity

For $\nu \notin \mathbb{Z}$ such that $\Re(\nu) \geq 0$ and any integer N such that

$$
N \geq\left\lfloor\frac{\Re(\nu)+1}{2}\right\rfloor, \text { then }
$$

$$
\begin{align*}
& 8 \pi x^{\frac{\nu}{2}} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu / 2} K_{\nu}(4 \pi \sqrt{n x})=-\frac{\Gamma(\nu) \zeta(\nu)}{(2 \pi)^{\nu-1}}+\frac{\Gamma(1+\nu) \zeta(1+\nu)}{\pi^{\nu+1} 2^{\nu} x} \\
& +\left\{\frac{\zeta(\nu) x^{\nu-1}}{\sin \left(\frac{\pi \nu}{2}\right)}+\frac{2}{\sin \left(\frac{\pi \nu}{2}\right)} \sum_{j=1}^{N} \zeta(2 j) \zeta(2 j-\nu) x^{2 j-1}\right. \\
& \left.-\pi \frac{\zeta(\nu+1) x^{\nu}}{\cos \left(\frac{\pi \nu}{2}\right)}+\frac{2}{\sin \left(\frac{\pi \nu}{2}\right)} \sum_{n=1}^{\infty} \sigma_{-\nu}(n) \frac{x^{2 N+1}}{\left(n^{2}-x^{2}\right)}\left(n^{\nu-2 N}-x^{\nu-2 N}\right)\right\} . \tag{5}
\end{align*}
$$

B. C. Berndt, A. Dixit, A. Roy, and A. Zaharescu Work

- In 2017, B. C. Berndt, A. Dixit, A. Roy, and A. Zaharescu, in their seminal work, showed that Cohen-type identity (5) can be used to derive the Voronoï-type summation formula for $\sigma_{s}(n)$.

Voronoï summation formula for $\sigma_{s}(n)$

Let $0<\alpha<\beta$ and $\alpha, \beta \notin \mathbb{Z}$. Let f denote a function analytic inside a closed contour strictly containing $[\alpha, \beta]$. Assume that $-\frac{1}{2}<\Re(\nu)<\frac{1}{2}$. Then

$$
\begin{aligned}
& \sum_{\alpha<j<\beta} \sigma_{-\nu}(j) f(j)=\int_{\alpha}^{\beta} f(t)\left(\zeta(1-\nu, \chi) t^{-\nu}+\zeta(\nu+1)\right) d t \\
&+2 \pi \sum_{n=1}^{\infty} \sigma_{-\nu}(n) n^{\nu / 2} \int_{\alpha}^{\beta} f(t)(t)^{-\frac{\nu}{2}}\{ \left(\frac{2}{\pi} K_{\nu}(4 \pi \sqrt{n t})-Y_{\nu}(4 \pi \sqrt{n t})\right) \cos \left(\frac{\pi \nu}{2}\right) \\
&\left.-J_{\nu}(4 \pi \sqrt{n t}) \sin \left(\frac{\pi \nu}{2}\right)\right\} d t .
\end{aligned}
$$

Identites involving generalised divisor function

- Let us define the generalized divisor function

$$
\begin{equation*}
\sigma_{z}^{(r)}(n)=\sum_{d^{r} \mid n} d^{z} \tag{6}
\end{equation*}
$$

- In 2022, D. Banerjee and B.Maji recently studied the infinite series involving the generalised divisor function and the modified K-Bessel functions.

Let $r \in \mathbb{Z}, z \in \mathbb{C}$ and a and x be any two positive real numbers,

$$
\sum_{n=1}^{\infty} \sigma_{z}^{(r)}(n) n^{\frac{\nu}{2}} K_{\nu}(a \sqrt{n x})
$$

where ν is a complex number with $\Re(\nu) \geq 0$.

- It is important to note that $\sigma_{z}^{(1)}(n)=\sigma_{z}(n)$.
- Hence, almost all the Cohen-type identities can be derived from their results.

Identities associated with $\sigma_{\nu, \chi}(n)$ for odd characters

Thm 1 [Banerjee-K, Advance in Applied Mathematics, 2023]
Let k be an even, non-negative integer and χ be an odd primitive Dirichlet character modulo q. Then, for any $\Re(\nu)>0$,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \sigma_{k, \chi}(n) n^{\frac{\nu}{2}} K_{\nu}(a \sqrt{n x})=\delta_{k} \frac{2^{\nu+1}}{a^{\nu+2}} \Gamma(1+\nu) L(1, \chi) x^{-\frac{\nu}{2}-1} \\
&+\frac{(-1)^{\frac{k}{2}} i q^{k}}{a^{\nu} 2^{k+2-\nu} \pi^{k+1}} \Gamma(\nu) \tau(\chi) \Gamma(k+1) L(k+1, \bar{\chi}) x^{-\frac{\nu}{2}} \\
&-\frac{(-1)^{\frac{k}{2}} i a^{\nu} q^{\nu+k} x^{\frac{\nu}{2}}}{2^{3 \nu+k+2} \pi^{2 \nu+k+1}} \Gamma(\nu+k+1) \tau(\chi) \sum_{n=1}^{\infty} \frac{\bar{\sigma}_{k, \bar{\chi}}(n)}{\left(n+\frac{a^{2} q \chi}{16 \pi^{2}}\right)^{\nu+k+1}},
\end{aligned}
$$

where δ_{k} is given by

$$
\delta_{k}= \begin{cases}1, & \text { if } k=0 \tag{7}\\ 0, & \text { if } k>0\end{cases}
$$

The result corresponding to $\nu=0$:

Theorem 2 [Banerjee-K, 2023]

Let k be an even, non-negative integer and χ be an odd primitive Dirichlet character modulo q. Then

$$
\begin{align*}
& \sum_{n=1}^{\infty} \sigma_{k, \chi}(n) K_{0}(a \sqrt{n x})=\delta_{k} \frac{2}{a^{2} x} L(1, \chi)-\frac{L(-k, \chi)}{4}\left(\log \left(\frac{8 \pi}{a^{2}}\right)+\frac{L^{\prime}(-k, \chi)}{L(-k, \chi)}-2 \gamma\right) \\
& \quad+\frac{L(-k, \chi)}{4} \log x+(-1)^{\frac{k}{2}} \frac{i k!q^{k}}{2(2 \pi)^{k+1}} \tau(\chi) \sum_{n=1}^{\infty} \bar{\sigma}_{k, \bar{\chi}}(n)\left(\frac{1}{n^{k+1}}-\frac{1}{\left(n+\frac{a^{2} q x}{16 \pi^{2}}\right)^{k+1}}\right) \tag{8}
\end{align*}
$$

where δ_{k} is defined in (7).

Positivity of $L(1, \chi)$

Let us assume that χ is a real odd primitive Dirichlet character modulo q. Now setting $k=0$ and then employing the functional equation in (8)

Result correspondence to $k=0$

$$
\begin{align*}
\sum_{n=1}^{\infty} d_{\chi}(n) K_{0}(a \sqrt{n x})= & \frac{L(1, \chi)}{x}\left(\frac{2}{a^{2}}-\frac{i \tau(\chi)}{4 \pi} x \log x\right) \\
& -\frac{L(0, \chi)}{4}\left(\log \left(\frac{8 \pi}{a^{2}}\right)+\frac{L^{\prime}(0, \chi)}{L(0, \chi)}-2 \gamma\right) \\
& +\frac{i a^{2} q x}{64 \pi^{3}} \tau(\chi) \sum_{n=1}^{\infty} \frac{d_{\bar{\chi}}(n)}{n\left(n+\frac{a^{2} q x}{16 \pi^{2}}\right)} \tag{9}
\end{align*}
$$

- Recall some facts on $K_{0}(x)$:

$$
K_{0}(x)=\int_{0}^{\infty} e^{-x \cosh t} d t
$$

Positivity of $L(1, \chi)$ Continued.

(1) Let us examine the left-hand side of (9).

- From the integral representation of $K_{0}(x)$, we obtain $K_{0}(x)$ is positive and monotonically decreasing on the interval $(0, \infty)$.
- The series representation of $K_{0}(x)$ is defined as

$$
K_{0}(x)=-\log \left(\frac{x}{2}\right) I_{0}(x)+\sum_{m=0}^{\infty} \frac{\left(\frac{x}{2}\right)^{2 m}}{(m!)^{2}} \frac{\Gamma^{\prime}(m+1)}{\Gamma(m+1)}
$$

where $I_{0}(x)$ is the Bessel function of the imaginary argument.

- From its series representation mentioned above, one can infer that $K_{0}(x)$ tends to $+\infty$ as x decreases to 0 .
- Hence, the left-hand side of (9) approaches $+\infty$ as x decreases to 0 .
(2) Now, we examine the right-hand side of (9).
- $i \tau(\chi)$ is real for real odd primitive Dirichlet character, we can easily deduce that the infinite series on the right-hand side of (9) tends to 0 as x decreases to 0 .
- i $\tau(\chi)$ is real and $x \log x$ tends to 0 as x decreases to 0 , we infer that $\frac{L(1, \chi)}{x}$ tends to $+\infty$ as x decreases to 0 ,
(3) Hence the strict positivity of $L(1, \chi)$ is proved.

Thank You!

