Notions of isomorphism for reproducing kernel Hilbert spaces

Nitesh Sharma

Definition 1 : Let X be any non empty set, $\mathcal{F}(X, \mathbb{C})$ be collection of all functions from X to \mathbb{C} and \mathcal{H} be subset of $\mathcal{F}(X, \mathbb{C})$ such that

- \mathcal{H} is vector subspace of vector space $\mathcal{F}(X, \mathbb{C})$
- **2** \mathcal{H} form a Hilbert space with the endowed inner product $\langle ., . \rangle$.
- For every x ∈ X, Evaluation function E_x : H → C defined as E_x(f) = f(x) is bounded.
 Then H is known as reproducing kernel Hilbert space on the set X.

Remark: Since by Riesz representation theorem $\forall x \in X \exists$ unique $k_x \in \mathcal{H}$ such that $E_x(f) = f(x) = \langle f, k_x \rangle$. Where k_x is known as reproducing kernel at a point x.

Definition 2: An RKHS is a triplet (X, \mathcal{H}, i) consisting of 3 objects:-

- (1) A non-empty set X
- (2) A Hilbert space \mathcal{H} consisting of functions from X to \mathbb{C} , and
- (3) A function $i: X \to \mathcal{H}$ given by $i(x) = k_x$. Where k_x is a reproducing kernel at the point x.

Q When are two RKHSs considered to be 'same'?

Definition 3: Let $\mathcal{H}_{j}, j = 1, 2$ be two Hilbert function spaces on the sets $X_{j}, j = 1, 2$ with reproducing kernels $K_{j}(y, x) = k_{y}^{j}(x), j = 1, 2$. Then $(X_{1}, \mathcal{H}_{1}, i_{1})$ is 'same' as $(X_{2}, \mathcal{H}_{2}, i_{2})$ if \exists a bijection $F : X_{1} \to X_{2}$ and a unitary map $U : \mathcal{H}_{1} \to \mathcal{H}_{2}$ such that the diagram below commutes.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 1: Let $(X_1, \mathcal{H}_1, i_1)$ and $(X_2, \mathcal{H}_2, i_2)$ be two Hilbert function spaces then TFSAE:-

- ∃ a bijective map F: X₁ → X₂ and a unitary map U: H₁ → H₂ that maps for each y ∈ X₁. The one dimensional subspace Ck¹_y ⊆ H₁ onto Ck²_y ⊆ H₂.
- ② ∃ a bijection $F : X_1 \to X_2$ and a nowwhere vanishing complex valued function $\gamma : X_1 \to \mathbb{C}$ such that for every $y \in X_1$, The mapping $k_y^1 \to \frac{1}{\gamma(y)} k_{F(y)}^2$ extends to a unitary $U : \mathcal{H}_1 \to \mathcal{H}_2$.
- ③ (*H*₂ is a rescaling of *H*₁) ∃ a bijection *F* : *X*₁ → *X*₂ and a nowwhere vanishing complex valued function *γ* : *X*₁ → C such that

$$\forall x, y \in X_1, K_2(F(x), F(y)) = \overline{\gamma(x)}\gamma(y)K_1(x, y).$$

O (*H*₁ is isometrically isomorphic to *H*₂) ∃ a bijection *F* : *X*₁ → *X*₂ and a nowwhere vanishing complex valued function *γ* : *X*₁ → C such that diagram below commutes.

Isomorphism between two RKHSs

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

where $\gamma.i_1: X_1 \to \mathbb{C}$ defined as $(\gamma.i_1)(x) = \gamma(x)i_1(x) = \gamma(x)k_x^1$.

Definition 3: An isomorphism of reproducing kernel Hilbert spaces from H_1 to \mathcal{H}_2 (or simply an RKHS isomorphism) is a bijective bounded linear map $T: \mathcal{H}_1 \to \mathcal{H}_2$ defined by

$$T(k_x^1) = \gamma(x) K_{F(x)}^2, x \in X_1$$

where $\gamma: X_1 \to C$ is a nowhere-vanishing function and $F: X_1 \to X_2$ is a bijection.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Definition 4:Let \mathcal{H}_j , j = 1, 2 be reproducing kernel Hilbert spaces on the some set X and let K_j , j = 1, 2 denote their kernel functions. A function $f: X \to \mathbb{C}$ is called a multiplier of \mathcal{H}_1 into \mathcal{H}_2 if $f\mathcal{H}_1 \subseteq \mathcal{H}_2$ where $f\mathcal{H}_1 = \{fh; h \in \mathcal{H}_1\}$.

 $\mathcal{M}(\mathcal{H}_1, \mathcal{H}_2)$ denote the set of all multiplier of \mathcal{H}_1 onto \mathcal{H}_2 .

Preposition : Let \mathcal{H} be an RKHS on X with kernel K and Let $f: X \to \mathbb{C}$ be a function, Let $\mathcal{H}_0 = \{h: fh = 0\}$ and let $\mathcal{H}_1 = \mathcal{H}_0^{\perp}$. Set $\mathcal{H}_f = f\mathcal{H} = f\mathcal{H}_1$ and define an inner product on \mathcal{H}_f by

 $\langle fh_1, fh_2 \rangle = \langle h_1, h_2 \rangle$ for $h_1, h_2 \in \mathcal{H}_1$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Then \mathcal{H}_f is an RKHS on X with kernel, $K_f(x, y) = f(x)K(x, y)\overline{f(y)}$.

Definition 5: We define a "**Multiplier Algebra Isomorphism**" between multiplier algebras $\mathcal{M}(\mathcal{H}_1)$ and $\mathcal{M}(\mathcal{H}_2)$, to be a **complete isomorphism** $\phi : \mathcal{M}(\mathcal{H}_1) \to \mathcal{M}(\mathcal{H}_2)$ that is implemented as

$$\phi(f)=f\circ G,\quad f\in\mathcal{M}(H_1)$$

where $G: X_1 \rightarrow X_2$ is a bijection.

If such an isomorphism exists then $\mathcal{M}(\mathcal{H}_1)$ and $\mathcal{M}(\mathcal{H}_2)$ are isomorphic as a multiplier algebras.

If ϕ is a **completely isometric** then we say that $\mathcal{M}(\mathcal{H}_1)$ and $\mathcal{M}(\mathcal{H}_2)$ are completely **isometrically isomorphic** as multiplier algebras.

Theorem 2:Let $d \in \mathbb{N} \cup \{\infty\}$, X and Y be two finite subsets of $B_d = \{x \in \mathbb{C}^d : ||x|| < 1\}$. Then following statements are equivalent :-(i) \mathcal{H}_x and \mathcal{H}_y are isomorphic as RKHSs (where $\mathcal{H}_x = \mathcal{H}_d^2|_X$ and $\mathcal{H}_y = \mathcal{H}_d^2|_Y$) (ii) $\mathcal{M}(\mathcal{H}_x)$ and $\mathcal{M}(\mathcal{H}_y)$ are isomorphic as multiplier algebras.

(iii) Card(X) = Card(Y)

- An Introduction to the Theory of Reproducing Kernel Hilbert Spaces by Vern I. Paulsen, Mrinal Raghupathi.
- Pick Interpolation and Hilbert Function Spaces by Jim Agler, John E. McCarthy.
- Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball by Danny Ofek, Satish K. Pandey, Orr Moshe Shalit.

THANK YOU

<□▶ <□▶ < 三▶ < 三▶ < 三▶ 三三 - のへぐ