Notions of isomorphism for reproducing kernel Hilbert spaces

Nitesh Sharma

Introduction

Definition 1 : Let X be any non empty set, $\mathcal{F}(X, \mathbb{C})$ be collection of all functions from X to \mathbb{C} and \mathcal{H} be subset of $\mathcal{F}(X, \mathbb{C})$ such that
(1) \mathcal{H} is vector subspace of vector space $\mathcal{F}(X, \mathbb{C})$
(2) \mathcal{H} form a Hilbert space with the endowed inner product $\langle.,$.$\rangle .$
(3) For every $x \in X$, Evaluation function $E_{x}: \mathcal{H} \rightarrow \mathbb{C}$ defined as $E_{x}(f)=f(x)$ is bounded.
Then \mathcal{H} is known as reproducing kernel Hilbert space on the set X .

Remark: Since by Riesz representation theorem $\forall x \in X \exists$ unique $k_{x} \in \mathcal{H}$ such that $E_{x}(f)=f(x)=\left\langle f, k_{x}\right\rangle$. Where k_{x} is known as reproducing kernel at a point x.

Introduction

Definition 2: An RKHS is a triplet (X, \mathcal{H}, i) consisting of 3 objects:-
(1) A non-empty set X
(2) A Hilbert space \mathcal{H} consisting of functions from X to \mathbb{C}, and
(3) A function $i: X \rightarrow \mathcal{H}$ given by $i(x)=k_{x}$. Where k_{x} is a reproducing kernel at the point x.

Q When are two RKHSs considered to be 'same'?

Isomorphism between two RKHSs

Definition 3 : Let $\mathcal{H}_{j}, j=1,2$ be two Hilbert function spaces on the sets $X_{j}, j=1,2$ with reproducing kernels $K_{j}(y, x)=k_{y}^{j}(x), j=1,2$. Then $\left(X_{1}, \mathcal{H}_{1}, i_{1}\right)$ is 'same' as $\left(X_{2}, \mathcal{H}_{2}, i_{2}\right)$ if \exists a bijection $F: X_{1} \rightarrow X_{2}$ and a unitary map $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ such that the diagram below commutes.

Isomorphism between two RKHSs

Theorem 1: Let $\left(X_{1}, \mathcal{H}_{1}, i_{1}\right)$ and $\left(X_{2}, \mathcal{H}_{2}, i_{2}\right)$ be two Hilbert function spaces then TFSAE:-
(1) \exists a bijective map $F: X_{1} \rightarrow X_{2}$ and a unitary map $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ that maps for each $y \in X_{1}$. The one dimensional subspace $\mathbb{C} k_{y}^{1} \subseteq \mathcal{H}_{1}$ onto $\mathbb{C} k_{y}^{2} \subseteq \mathcal{H}_{2}$.
(2) \exists a bijection $F: X_{1} \rightarrow X_{2}$ and a nowwhere vanishing complex valued function $\gamma: X_{1} \rightarrow \mathbb{C}$ such that for every $y \in X_{1}$, The mapping $k_{y}^{1} \rightarrow \frac{1}{\gamma(y)} k_{F(y)}^{2}$ extends to a unitary $U: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$.
(0) $\left(\mathcal{H}_{2}\right.$ is a rescaling of $\left.\mathcal{H}_{1}\right) \exists$ a bijection $F: X_{1} \rightarrow X_{2}$ and a nowwhere vanishing complex valued function $\gamma: X_{1} \rightarrow \mathbb{C}$ such that

$$
\forall x, y \in X_{1}, K_{2}(F(x), F(y))=\overline{\gamma(x)} \gamma(y) K_{1}(x, y) .
$$

(0) $\left(\mathcal{H}_{1}\right.$ is isometrically isomorphic to $\left.\mathcal{H}_{2}\right) \exists$ a bijection $F: X_{1} \rightarrow X_{2}$ and a nowwhere vanishing complex valued function $\gamma: X_{1} \rightarrow \mathbb{C}$ such that diagram below commutes.

Isomorphism between two RKHSs

where $\gamma \cdot i_{1}: X_{1} \rightarrow \mathbb{C}$ defined as $\left(\gamma . i_{1}\right)(x)=\gamma(x) i_{1}(x)=\gamma(x) k_{x}^{1}$.

Isomorphism between two RKHSs

Definition 3: An isomorphism of reproducing kernel Hilbert spaces from H_{1} to \mathcal{H}_{2} (or simply an RKHS isomorphism) is a bijective bounded linear map $T: \mathcal{H}_{1} \rightarrow \mathcal{H}_{2}$ defined by

$$
T\left(k_{x}^{1}\right)=\gamma(x) K_{F(x)}^{2}, x \in X_{1}
$$

where $\gamma: X_{1} \rightarrow C$ is a nowhere-vanishing function and $F: X_{1} \rightarrow X_{2}$ is a bijection.

Multiplier algebra of a RKHS

Definition 4:Let $\mathcal{H}_{j}, j=1,2$ be reproducing kernel Hilbert spaces on the some set X and let $K_{j}, j=1,2$ denote their kernel functions. A function $f: X \rightarrow \mathbb{C}$ is called a multiplier of \mathcal{H}_{1} into \mathcal{H}_{2} if $f \mathcal{H}_{1} \subseteq \mathcal{H}_{2}$ where $f \mathcal{H}_{1}=\left\{f h ; h \in \mathcal{H}_{1}\right\}$.
$\mathcal{M}\left(\mathcal{H}_{1}, \mathcal{H}_{2}\right)$ denote the set of all multiplier of \mathcal{H}_{1} onto \mathcal{H}_{2}.
Preposition: Let \mathcal{H} be an RKHS on X with kernel K and Let $f: X \rightarrow \mathbb{C}$ be a function, Let $\mathcal{H}_{0}=\{h: f h=0\}$ and let $\mathcal{H}_{1}=\mathcal{H}_{0}^{\perp}$. Set $\mathcal{H}_{f}=f \mathcal{H}=f \mathcal{H}_{1}$ and define an inner product on \mathcal{H}_{f} by

$$
\left\langle f h_{1}, f h_{2}\right\rangle=\left\langle h_{1}, h_{2}\right\rangle \text { for } h_{1}, h_{2} \in \mathcal{H}_{1} .
$$

Then \mathcal{H}_{f} is an RKHS on X with kernel, $K_{f}(x, y)=f(x) K(x, y) \overline{f(y)}$.

Isomorophism between Multiplier algebras

Definition 5: We define a "Multiplier Algebra Isomorphism" between multiplier algebras $\mathcal{M}\left(\mathcal{H}_{1}\right)$ and $\mathcal{M}\left(\mathcal{H}_{2}\right)$, to be a complete isomorphism $\phi: \mathcal{M}\left(\mathcal{H}_{1}\right) \rightarrow \mathcal{M}\left(\mathcal{H}_{2}\right)$ that is implemented as

$$
\phi(f)=f \circ G, \quad f \in \mathcal{M}\left(H_{1}\right)
$$

where $G: X_{1} \rightarrow X_{2}$ is a bijection.
If such an isomorphism exists then $\mathcal{M}\left(\mathcal{H}_{1}\right)$ and $\mathcal{M}\left(\mathcal{H}_{2}\right)$ are isomorphic as a multiplier algebras.
If ϕ is a completely isometric then we say that $\mathcal{M}\left(\mathcal{H}_{1}\right)$ and $\mathcal{M}\left(\mathcal{H}_{2}\right)$ are completely isometrically isomorphic as multiplier algebras.

Isomorphism between Multiplier algebras

Theorem 2:Let $d \in \mathbb{N} \cup\{\infty\}, X$ and Y be two finite subsets of $B_{d}=\left\{x \in \mathbb{C}^{d}:\|x\|<1\right\}$. Then following statements are equivalent :-
(i) \mathcal{H}_{x} and \mathcal{H}_{y} are isomorphic as RKHSs (where $\mathcal{H}_{x}=\left.H_{d}^{2}\right|_{x}$ and $\left.\mathcal{H}_{y}=\left.H_{d}^{2}\right|_{Y}\right)$
(ii) $\mathcal{M}\left(\mathcal{H}_{x}\right)$ and $\mathcal{M}\left(\mathcal{H}_{y}\right)$ are isomorphic as multiplier algebras.
(iii) $\operatorname{Card}(\mathrm{X})=\operatorname{Card}(\mathrm{Y})$

References

(1) An Introduction to the Theory of Reproducing Kernel Hilbert Spaces by Vern I. Paulsen, Mrinal Raghupathi.
(2) Pick Interpolation and Hilbert Function Spaces by Jim Agler, John E. McCarthy.
(3) Distance between reproducing kernel Hilbert spaces and geometry of finite sets in the unit ball by Danny Ofek, Satish K. Pandey, Orr Moshe Shalit.

THANK YOU

