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Improving Software Maintenance Ticket Resolution Using Process

Mining

by
Monika Gupta

Abstract
Software maintenance refers to the modification of software product after delivery and is
required to correct faults, to improve the performance or other attributes, or to adapt the
product to a modified environment. It is a crucial activity in the software industry and
consumes a major portion of the expenditure on software. It is known that the performance of
an organization can be improved by improving the process. Therefore, given the importance
and cost involved, there is need to continuously improve the software maintenance process.

This thesis focuses on analyzing and improving the software maintenance ticket resolution
process by exploring novel applications of process mining. We decided to study the ticket
resolution process as it is an important part of a software maintenance process. Process
mining consists of mining event logs generated from business process execution supported
by information systems.

To identify the potential opportunities for improvement in software process management
by mining data repositories, we first conducted qualitative interviews and surveys of more
than 40 managers in a large global IT company. The survey provided us with a list of more
than 10 maintenance process challenges encountered by practitioners, and benefits that might
accrue by addressing them. This thesis addressed a few of the identified challenges pertaining
to the software maintenance ticket resolution process. We studied different types of software
maintenance tickets, that is, software bug tickets and IT support tickets. As identified
from the survey, there is a need to analyze the data generated during the ticket resolution
process to capture process reality and identify the process inefficiencies. Hence, we proposed
a framework to analyze the data for ticket resolution process from diverse perspectives,
by applying process mining techniques. Using the proposed framework, we discovered the
process model that captured the control flow, timing and frequency information about events.
We then studied inefficiencies such as self-loops, back-forth, ticket reopen, timing issues,
delay due to user input requests, and effort consumption. We also analyzed the degree
of conformance between the designed and the runtime (discovered) process model. The
data-driven insights helped to make process improvement decisions. For example, using the
proposed framework on IT support ticket data for a large global IT company we found that
around 57% of the tickets had user input requests in the life cycle, causing significant delays
in user-experienced resolution time. Therefore, we proposed a machine learning based-system
that preempts a user at the time of ticket submission with an average accuracy of around
94% to provide additional information that the analyst is likely to ask, thus mitigating delays
due to later user input requests.
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Also, we explored unstructured data generated during process execution to derive insights
that could not be obtained solely from structured data (event logs). To achieve this, we
extracted topical phrases (keyphrases) from the unstructured data using an unsupervised
graph-based approach. The keyphrases were then integrated into the event log, which got
reflected in the discovered process model.

To resolve a ticket, some code changes were made, which led to anomalies such as regres-
sion bugs. We aimed to detect whether ticket resolution caused some anomalous behavior so
as to reduce the post-release bugs, one of the important challenges identified from the survey.
To achieve this, we proposed an approach to discover an execution behavior model for the
deployed and the new version using the execution logs that is, runtime print statements.
Differences between the two models were then identified, which allowed programmers to
detect anomalous behavior changes, that is, not consistent with code changes thereby iden-
tifying potential bugs that might have been introduced during code change. We applied
the proposed framework and solution approaches on a series of case studies on data sets of
commercial and open source projects.

Through the aforementioned contributions, we explored the potential of applying process
mining using various data sources to improve various aspects of the software maintenance
ticket resolution process. Such analysis usually focuses on identifying the inefficiencies, but
as we observed in the thesis, it can also lead to automation opportunities to make the ticket
resolution process more efficient.
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Chapter 1

Introduction and Related Work

Software development is a collective, complex, and creative effort [1]. A software product

goes through the following stages during its life cycle: requirement analysis and specification,

design, implementation, integration and testing, deployment, operation, and maintenance [2].

Each aforementioned stage is quite complex and involves various processes. Three critical

dimensions that organizations typically focus on to improve their businesses are as follows:

people, procedures and methods, and tools and equipment [3]. While people and technology

are important, processes bind these dimensions together. Managers must make continuous

efforts to assess and improve the software processes because the quality of a process is directly

related to the quality of the developed software and the productivity of an organization

[4][1] [5]. This motivated various software process research initiatives, such as better ways to

model the developer organization processes (process modeling) and better ways of assessing

and improving the processes of the organization (process assessment and improvement) [1][6].

Various Software Process Improvement (SPI) frameworks [7] exist to assess and improve the

software development processes, such as Capability Maturity Model Integration (CMMI) [8]

and ISO/IEC 15504 (SPICE) [9][10], and quality improvement paradigm [11].

Software maintenance is a crucial activity in the software industry and consumes a major

portion of the expenditure on software [12][13]. Software maintenance refers to the modi-

fication of a software product after delivery and is required to correct faults, improve the

performance or other attributes, or adapt the product to a modified environment. Based on

study by Lientz and Swanson [14], there are four categories of maintenance:
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∙ Adaptive - to keep a software product usable in the changing environment

∙ Perfective - to implement changed or new user requirements

∙ Corrective - to fix discovered faults

∙ Preventive - to prevent problems in the future

The primary focus of the aforementioned SPI initiatives was on the overall project man-

agement, and not on the issues specific to software maintenance. The SWEBOK initiative

identified a number of activities and practices specific to software maintenance, such as

service-level agreement negotiation and handling of tickets [15]. Therefore, models, such as

software maintenance model, 𝑆𝑀𝑚𝑚 (complement to CMMI version 1.1 [16]), are developed

to assess and improve the quality of software maintenance [17]. However, application of

these initiatives requires professional judgment to evaluate how an organization benchmarks

against the reference model that is not scalable. Ticket reporting and management is an

important part of software maintenance. It is supported by various information systems such

as ticketing system, peer code review system, and version control system (for source code

base). A ticket once reported gets assigned to a developer (analyst), a person responsible

for servicing the ticket. Ticket resolution can involve code changes thus, code patches are

submitted to peer code review system before committing to the final code base. Tracking of

software maintenance tickets is critical for efficient improvement of software quality.

Software development and maintenance is supported by various tools, which generate a

huge amount of data archived in software repositories. The mining software repositories field

analyzes the rich data available in software repositories to uncover interesting and actionable

information about software projects; thus, it relies less on the practitioner’s intuition and

experience [18] [19] [20] [21] [22] [23]. Software repositories can be broadly divided into the

following three categories [22]:

∙ Historical repositories, such as source control repositories, bug repositories, and archived

communications, record a lot of information about the evolution and progress of a

project.
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Table 1.1: Software engineering data, mining algorithms, and software engineering tasks

Software Engineering Data Mining Algorithms Tasks
Sequences: Execution/
Static traces, co-changes, and
so on

Association rule mining, frequent
item set/subseq/partial-order min-
ing, seq matching/clustering/classi-
fication, and so on

programming, mainte-
nance, bug detection,
debugging, and so on

Graphs: Dynamic/static call
graphs, program dependence
graphs, and so on

Frequent subgraph mining, graph
matching/clustering/classification,
and so on

bug detection, debugging,
and so on

Text: Bug reports, emails,
code comments, documenta-
tions, and so on

text matching/clustering/classifica-
tion, and so on

maintenance, bug detec-
tion, debugging, and so on

∙ Run time repositories, such as deployment logs, contain information about the execu-

tion and the usage of an application at a single or multiple deployment sites.

∙ Code repositories, such as GitHub, SourceForge.net, and Google code, contain the

source code of various applications developed by several developers.

The repositories are analyzed by applying various data mining techniques, such as clas-

sification, association rule mining, and clustering, to support different software engineering

tasks such as programming, defect detection, testing, debugging, and maintenance [22]. Ta-

ble 1.1 [21] presents example software engineering data being mined (the first column) and

example software engineering tasks (the last column) assisted by applying various mining

algorithms (the middle column) on each type of software engineering data listed in the first

column. A comprehensive literature survey on the approaches for mining software reposito-

ries was presented by Kagdi et al. [23].

Ever-changing customer needs and rapid technical progress highlight the need to con-

tinuously improve software maintenance processes to make it more efficient. Given the

complexity and cost for software maintenance ticket resolution [12], it is important to im-

prove the efficiency of ticket resolution process. The goal of this thesis is to help improve the

ticket resolution process by analyzing the data stored in software repositories during ticket

resolution.

Software maintenance ticket resolution has been analyzed by mining software repositories

for multiple tasks, such as duplicate bug detection [24][25], bug triaging [26][27][28][29], com-

ponent assignment [30][31], resolution time prediction [32][33], reopen prediction [34][35][36],
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reassignment prediction [37], and bug prediction [38][39][40]. The existing studies [21][23] fa-

cilitate a variety of tasks by applying different data mining techniques; however, they do not

focus on end-to-end process analysis. This highlights the need for techniques to objectively

capture the integrated view of the ticket resolution process to efficiently improve it. Most

research appears to begin with a particular problem, and then develops the investigation

from that problem. For instance, existing techniques can facilitate efficient bug (ticket) as-

signment [26][27][28], duplicate detection [24][25], and other specific tasks during the ticket

resolution process. However, at the outset, we need to analyze and understand the actual

ticket resolution process from different perspectives to objectively identify its inefficiencies

and improvement possibilities. Accordingly, we can decide whether it needs improvement

in duplicate detection or bug assignment or other to enhance the overall process quality.

Previous studies have indicated that this can be achieved through process mining. Process

mining consists of mining event logs generated from business process execution supported

by information systems. The application of process mining for end-to-end ticket resolution

process analysis is challenging due to the unstructuredness of the software ticket resolution

process, distribution of data over multiple data sources of different kinds (software reposito-

ries, e.g., a version control system or an issue tracker), and data format not being directly

usable for existing process mining techniques. In this thesis, we contribute methods that

can provide a promising lens to study the software ticket resolution process with a holistic

perspective. The aim of the thesis is to analyze and improve the software maintenance ticket

resolution process by exploiting novel applications of process mining.

In the next section we discuss related work in the area of ticket resolution in software

maintenance. In Section 1.2, we discuss related work in process mining. Having provided a

brief background on the two key aspects of the thesis, that is, ticket resolution and process

mining, we then provide an overview of the thesis in Section 1.3.

1.1 Ticket Resolution in Software Maintenance

Ticket reporting and resolution is a key aspect of software maintenance. Tickets help track

and coordinate software maintenance efforts. This is supported by a ticketing system (e.g.,
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Bugzilla issue tracking system) where tickets are reported by developers and users. Tickets

usually have specific elements, including structured fields such as reporter, reporting time,

priority and agent, and unstructured fields such as description, comments and attachments.

Analysts (such as developers) responsible for servicing the ticket may depend on other repos-

itories such as code base and revision history, which also need to be referred to for fixing

the ticket. A ticket goes through various stages during its lifecycle (starting from ticket

reporting to ticket resolution), which are discussed in the following section.

1.1.1 Ticket Lifecycle

A ticket goes through various states such as ticket assignment to a suitable agent (devel-

oper), component assignment (a component of software to which the issue pertains), need

info (asking of information from the reporter), resolution, and closure during the resolution

lifecycle. The states can be broadly grouped into the following major phases [41]:

∙ Ticket understanding: A ticket once reported needs to be understood such that

it can be summarized, filtered as duplicate, and assigned value for attributes such as

priority and severity. A good understanding of the ticket plays a key role in the overall

lifecycle of ticket resolution.

∙ Ticket assignment: Based on the initial understanding of the reported ticket, a ticket

needs to be assigned to a suitable analyst (developer). A developer is responsible for

servicing the ticket. If a ticket is assigned to an inappropriate developer, it needs to

be reassigned to another developer. These reassignments degrade the quality of ticket

resolution because the probability of a ticket being fixed decreases with an increased

number of reassignments [26].

∙ Ticket fixing: An agent (developer) assigned to a ticket needs to take suitable actions

to resolve (fix) an issue. This may need discussion with the reporter for various reasons

such as asking for information; these interactions are usually captured as comments.

The fixing of some issues may need code changes. Hence, a developer generates a patch

and commits it to the final code base.
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There are many existing studies corresponding to various activities in each of these stages.

We discuss some of the existing studies in the next section.

1.1.2 Studies for Improving Ticket Resolution

A large number of tickets are submitted, which can lead to the queuing of work and delay

the ticket resolution. Several approaches have been proposed to automate various ticket

resolution activities from the aforementioned stages of the ticket lifecycle.

Ticket understanding: We briefly discuss studies on ticket (bug) summarization, dupli-

cate detection, priority prediction, severity prediction, and reopen prediction. These are

some of the main activities performed as part of this stage of ticket lifecycle.

∙ Bug Summarization: Automatic summarization helps to reduce the size of bug

reports by selecting a subset of existing sentences, that is, extraction approach. Various

supervised and unsupervised learning approaches have been used to predict whether

a sentence from the existing report should be a part of the summary or not. In

supervised learning, a prediction model is trained on the labeled summary data to

predict whether a sentence belongs to the summary of a new bug report [42][43].

Unlike supervised approaches, unsupervised bug summarization approaches [44][45]

do not require labeled data. The summary is generated using various unsupervised

approaches, such as centrality, and a hypothetical model.

∙ Duplicate Detection: If a ticket similar to a ticket already submitted is reported,

it is referred to as duplicate of the existing ticket. Duplicate detection is important

to avoid redundant efforts towards the resolution. However, it is a tedious task given

a large number of tickets, and it is not straightforward to determine whether two

tickets indeed correspond to the same issue. There are existing studies for automatic

duplicate detection which can be grouped as textual information analysis based de-

tection and hybrid information analysis based detection. Textual information analysis

based approaches [46][47] rely on textual contents, such as summaries, descriptions,

and comments, of bug reports to detect textual similarity between a new bug report
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and historical bug reports. Hybrid information analysis based detection approaches

[48][49][50] combine non textual information, such as severity, product, and execution

information, with textual similarity to detect the duplicates more accurately.

∙ Priority Prediction: Priority is a structured field associated with tickets, which has

categorical values such as high/medium/low or P1/P2/P3/P4/P5 (highest to lowest

priority). It helps developers prioritize tickets, that is, tickets with the highest priority

needs to be given more attention. The manual assignment of priority based on the

understanding from the initially reported ticket is time-consuming. The existing au-

tomatic priority prediction approaches [51][52] make use of textual content and other

ticket attributes to train a machine learning model. Using a trained model, a new

ticket is classified to an appropriate priority level.

∙ Severity Prediction: Severity is another predefined field of bugs (tickets) that in-

dicates the degree of impact on the functionality. It can have levels such as blocking,

critical, major, normal, minor, and trivial. It needs the expertise to gauge the impact

by the manual inspection of a reported ticket. Using various ticket attributes, the

existing automatic severity prediction approaches predict the severity level for a new

ticket at different levels of granularity. For example, some studies [53] proposed solu-

tions to predict the severity level as severe or non-severe. However, other approaches

[54][55] can predict at a more granular level and assign a specific severity level to a

new ticket.

∙ Reopen Prediction: A ticket can be reopened for multiple reasons, such as avail-

ability of additional information for a better understanding of the issue, wrongly fixed

bug, or regression bugs. The reopening of tickets increases maintenance efforts and

leads to rework [36], and hence it is undesirable. Various machine learning algorithms

using different sets of features have been proposed to predict ticket reopening [35][56].

Ticket triaging (assignment): Assignment of a ticket to a suitable developer for fixing

the ticket is an important activity. The automatic triaging of tickets can reduce the waiting

time for deciding the appropriate developer and also reduce the probability of reassignments.
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The existing approaches for recommending an appropriate developer (analyst) employ dif-

ferent techniques, which are based on machine learning [27][57][28], expertise model [58][59],

tossing graph [60], social network [61], or topic model [62][63]. The performance of machine

learning based approaches for developer recommendation can be further improved using a

feature selection technique [64] and a composite model [65].

Ticket fixing: Assignees investigate the reported issue and find out whether it needs a

code change. We discuss the studies for automatic bug localization and patch generation,

which can reduce the overall fixing time.

∙ Bug localization: The fixing of some bugs may require code changes. It needs

to be localized by the assigned developer. It requires a good understanding of the

bug and the code base for bug localization. Hence, it is time consuming. IR-based

approaches provide a ranked list of candidate source code files where the bug may

appear [66][67][68]. To generate this list, a bug report is treated as a query, and the

source code files correspond to the document corpus. The accuracy of automatic bug

localization can be improved by considering additional information such as structured

information [69] or by using compositional vector space models [70]. However, this

enhancement increases the running cost and algorithm complexity.

∙ Patch generation: Developers need to write code patches to fix the bugs. Various

automatic patch generation approaches have been proposed for efficient patch gen-

eration. Genetic programming-based solutions [71][72] have been proposed wherein

program variants are generated by introducing mutations. The variant that passes all

test cases is regarded as a successful patch. However, this requires test cases for patch

evaluation and thus identifies the correct patch. Bug report analysis-based approaches

are proposed to overcome this dependency. Liu et al. [73] proposed an approach to pro-

duce the patches based on bug reports, which do not require test cases. This approach

generated more correct patches and reduced the patch generation time.

As discussed earlier, studies for automating various activities from the ticket resolution

process aimed to optimize the overall ticket resolution process by automating a specific ac-
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tivity. They did not focus on analyzing the reality of ticket resolution process using data

generated during the resolution process. It is important to discover the process reality and

identify inefficiencies, thus making informed process improvement decisions. This thesis

aimed to analyze the ticket resolution process by discovering process reality from logs gen-

erated during process execution, thus supporting effective process improvement decisions.

1.2 Process Mining

Process mining consists of mining event logs generated from business process execution sup-

ported by information systems to capture business processes [74][75]. Process mining is

aimed at providing fact-based insights about business processes and hence support efficient

process improvements [76]. Process mining includes process discovery, process performance

analysis, conformance verification, case prediction, history-based recommendations, and or-

ganizational analysis [76]. It has already been applied to analyze business processes from

multiple domains [75]. Many process mining framework and tools, such as ProM1 (open

source) and Disco2 (commercial), are used to derive process model and analyze data from

different perspectives.

1.2.1 Types of Process Mining

As shown in Figure 1-1, business processes are supported by software systems that collect,

organize, and store data (such as messages and transactions). Event log is extracted from

the stored data for process mining, including: (a) process discovery, (b) conformance, and

(c) enhancement [76]. Event log consists of cases where each case is an instance of a process.

As part of the process mining, a discovery technique takes an event log and produces

a model capturing the behavior recorded in the log. Multiple process discovery algorithms

exist. For example, the 𝑎𝑙𝑝ℎ𝑎-algorithm can depict the behavior recorded in the log as a

Petri net [77]. It represents the control flow of the process. The quality of the discovered
1http://www.processmining.org/prom/start
2http://www.fluxicon.com/
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1.3 Process Mining 9

Fig. 1.4 Positioning of the three main types of process mining: discovery, conformance, and en-
hancement

However, most information systems store such information in unstructured form,
e.g., event data is scattered over many tables or needs to be tapped off from sub-
systems exchanging messages. In such cases, event data exist but some efforts are
needed to extract them. Data extraction is an integral part of any process mining
effort.

Let us assume that it is possible to sequentially record events such that each
event refers to an activity (i.e., a well-defined step in the process) and is related to
a particular case (i.e., a process instance). Consider, for example, the handling of
requests for compensation modeled in Fig. 1.1. The cases are individual requests
and per case a trace of events can be recorded. An example of a possible trace
is 〈register request, examine casually, check ticket, decide, reinitiate request, check
ticket, examine thoroughly, decide, pay compensation〉. Here activity names are used
to identify events. However, there are two decide events that occurred at different
times (the fourth and eighth event of the trace), produced different results, and may
have been conducted by different people. Obviously, it is important to distinguish
these two decisions. Therefore, most event logs store additional information about
events. In fact, whenever possible, process mining techniques use extra information
such as the resource (i.e., person or device) executing or initiating the activity, the
timestamp of the event, or data elements recorded with the event (e.g., the size of an
order).

Event logs can be used to conduct three types of process mining as shown in
Fig. 1.4.

Figure 1-1: Process mining: discovery, conformance, and enhancement [76].

model is assessed on multiple dimensions, with few are follows [76]:

∙ Fitness: The discovered model should allow for the behavior seen in the event log.

∙ Precision: The discovered model should not allow for behavior completely unrelated

to what was seen in the event log.

∙ Generalization: The discovered model should generalize the example behavior seen in

the event log.

∙ Simplicity: The discovered model should be as simple as possible.

There should be a balance between the four criteria as there exists a trade-off between

them [76].

The second type of process mining is conformance. Conformance checking can be used

to check whether reality, as recorded in the log, conforms to the model and vice versa. The

model may have been constructed by hand or may have been discovered. Conformance

checking relates events in the event log to activities in the process model and compares

both. The goal is to find commonalities and discrepancies between the modeled behavior

and the observed behavior. Conformance checking is relevant for: (a) business alignment

and auditing, that is, when cases deviate from the defined model and corrective actions

are needed, and (b) measuring the performance of process discovery algorithms thus, repair

models that are not aligned well with reality. Conformance checking can be achieved by

replaying tokens or comparing footprints.
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The third type of process mining is enhancement. The idea is to extend or improve a

defined process model using information about the actual process discovered from the event

log. For example, one can extend the analysis to identify the bottlenecks using the time

stamps recorded for each event. Thus, appropriate measures can be taken to mitigate the

delays.

Different process mining perspectives can be identified as follows:

∙ Control-flow perspective: It focuses on the ordering of activities. The goal of mining

this perspective is to find a good characterization of all possible process paths that can

be expressed in terms of a Petri net or some other notations (e.g., EPCs, BPMN, and

UML ADs).

∙ Organizational perspective: It focuses on information about resources hidden in the

log, that is, which actors (e.g., people, systems, roles, and departments) are involved

and how they are related. The goal is to either structure the organization by classifying

people in terms of roles and organizational units or show the social network.

∙ Case perspective: It focuses on properties of cases. Obviously, a case can be character-

ized by its path in the process or by the originators working on it. However, cases can

also be characterized by the values of the corresponding data elements. For example,

if a ticket gets reopened, it is interesting to investigate its characteristics.

∙ Time perspective: It is concerned with the timing and frequency of events. When events

bear time stamps, it is possible to discover bottlenecks, measure service levels, monitor

the utilization of resources, and predict the remaining processing time of running cases.

1.2.2 Event Log

Event log generation and extraction are crucial parts of process mining. As shown in Figure

1-1, event log is the starting point for process mining. It is taken as input for process

discovery and further process analysis. Typically, the structure of event log is defined as

follows:

11



Ticket ID Priority Activity Time stamp Actor
6672 High Create 1/20/2009 12:14 metalsi...@gmail.com
6672 High Open 5/14/2009 23:49 j...@chromium.org
6672 High WontFix 9/17/2009 21:40 suna...@chromium.org
6672 High Closed 9/17/2009 21:48 NULL
7187 Low Create 1/29/2009 14:30 igi...@gmail.com
7187 Low Fixed 5/14/2009 23:52 j...@chromium.org
7187 Low Closed 5/14/2009 23:52 j...@chromium.org

Table 1.2: Sample Event Log with Ticket ID and Priority as Case-Specific Attributes, and
Activity, Time Stamp and Actor as Event-Specific Attributes.

∙ Event log consists of cases where each case is an instance of a process. For example,

every ticket (issue) reported in the Issue Tracking System (ITS) is an instance of the

ticket resolution process.

∙ Case consists of events such that each event relates to precisely one case, that is, each

event is associated with a unique case ID.

∙ Events can have attributes. Examples of typical attribute names are activity, time,

costs, and resource.

Therefore, as illustrated in Table 1.2, every entry in the event log is an event referring to

a case, activity, time stamp, and additional attributes such as actor (resource), associated

cost, and duration. We can classify the attributes in each entry as follows:

∙ Case-Specific Attributes: These are attributes associated with a case that remain

constant for all the events pertaining to the same case. For instance, in the given

example Table 1.2, Ticket ID and Priority are case attributes.

∙ Event-Specific Attributes: These are attributes characterizing each event that are

different for the same case across its life cycle, such as Activity, Time Stamp, and Actor

(refer to Table 1.2).

Every attribute has its significance and contributes differently to the analysis such as:

∙ Case ID: It uniquely identifies the case. It helps to visualize the life cycle of each case

in discovered process models. For example, here Ticket ID can be selected as case ID

to capture the complete flow starting from Create till the last activity.
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∙ Activity: Every event is related to some activity embarking the progress of case life

cycle, for example, Assigned, Resolved, and Closed.

∙ Time stamp: All events have an associated time stamp, a datetime attribute. It

enables ordering of activities on the basis of execution time and allows analysis such

as bottleneck identification.

∙ Resource: It is basically the information about the person performing the activity, that

is, actor. Organizational analysis can be performed if this information is available. For

example, email id of the ticket reporter.

∙ Other attributes: Additional attributes can be useful for more interesting and diverse

analysis. However, they are not necessary for basic types of process mining.

Also, we can say that an event log is a multiset of traces (the same trace may ap-

pear multiple times) where the trace is a sequence of activity names. We represent trace

with activities ordered by time stamp. For example, in Table 1.2, there are two unique

traces exist, each with the frequency of occurrence as one each and can be represented as

< 𝐶𝑟𝑒𝑎𝑡𝑒, 𝑂𝑝𝑒𝑛, 𝑊𝑜𝑛𝑡𝐹 𝑖𝑥, 𝐶𝑙𝑜𝑠𝑒𝑑 >1 and < 𝐶𝑟𝑒𝑎𝑡𝑒, 𝐹 𝑖𝑥𝑒𝑑, 𝐶𝑙𝑜𝑠𝑒𝑑 >1 where superscript

corresponds to the frequency of the trace.

1.2.3 Process Model Representations

Various conventional process models, such as Petri nets [77], BPMN [78], WF nets [79], EPCs

[80], YAWL [81], and UML activity diagrams, have problems such as internal inconsistency

(deadlocks, livelocks, and so on) and inability to represent the underlying process well [82].

Causal nets are a representation tailored toward process mining and address the limitations

of conventional languages in the context of process mining [76]. A causal net is a graph where

nodes represent activities and arcs represent causal dependencies [82]. In a causal net, there

is one start activity and one end activity. Each activity has a set of possible input bindings

and a set of possible output bindings. Output bindings create obligations, whereas input

bindings remove obligations. A valid binding sequence models an execution path starting

with start activity and ending with end activity while removing all obligations created during
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execution. The behavior of a causal net is restricted to valid binding sequences. Hence, the

routing logic is solely represented by the possible input and output bindings. Causal nets

are particularly suitable for process mining given their declarative nature and expressive-

ness without introducing all kinds of additional model elements (places, conditions, events,

gateways, and so on). Algorithms such as heuristic mining [74], and fuzzy mining [83] use

representations similar to causal nets.

1.2.4 Algorithms for Process Discovery

Many process discovery techniques, based on algorithmic, machine learning, and probabilistic

approaches, have been conceived in literature. Cook et al. proposed three different methods

for process discovery in the context of software engineering [84]. The RNet, Ktail and Markov

methods adopt statistical, algorithmic, and hybrid approaches respectively [84]. Agrawal et

al. and Datta et al. presented approaches to construct process models from logs of workflow

management systems [85][86]. Weerdt et al. presented an extensive overview of available

process discovery techniques and evaluated the performance on real-life event logs [87].

The 𝛼-algorithm can be considered as one of the most substantial techniques in the

process mining field. It represents the behavior recorded in a log as a Petri net [77]. The

algorithm assumes event logs to be complete and without any noise. Therefore, the 𝛼-

algorithm is sensitive to noise and incompleteness of event logs. Moreover, the original

𝛼-algorithm was incapable of discovering short loops or nonlocal, nonfree choice constructs.

The original 𝛼-algorithm is improved to mine short loops (𝛼+-algorithm [88]) and detect

nonfree choice constructs (𝛼 + +-algorithm [89]). Heuristic miner extends 𝛼-algorithm such

that it applies frequency information with regard to three types of relationships between

activities in an event log: direct dependency, concurrency, and not direct connectedness

[74]. A Heuristic algorithm is prone to be noise resilient because of threshold parameter

settings and therefore expected to be robust in a real-life context. While heuristics miner

can discover short loops and non local dependencies, it lacks the capability of detecting

duplicate activities.

Günther et al. [83] proposed a fuzzy miner, an adaptive simplification and visualization

technique based on significance and correlation measures to visualize the behavior in event
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logs at various levels of abstraction. The main contribution of a fuzzy miner is that it can

also be applied to less-structured, or unstructured processes, which is mostly the case for

real-life environments. The Heuristics miner, which also employs heuristics to limit the set

of precedence relations (not event), is closely related to a fuzzy miner. Fuzzy miner discovers

the process more precisely as compared with heuristic miner even in case of less-structured

process behavior [83]. The main limitation of a fuzzy model is that it cannot be translated to

a formal Petri net that limits a comparative evaluation to other process discovery techniques.

We present the fundamentals of a fuzzy miner in next chapter, which is used to discover the

process model for our case studies.

1.2.5 Studies using Process Mining on Software Repositories

We present an overview of previous studies that applied process mining on software reposito-

ries. Samalikova et al. investigated CMMI from a process mining perspective and identified

model components for which process mining techniques can be applied [90]. The results of a

case study on the change control board process illustrated that process mining could provide

CMMI assessors with the relevant information [90]. Kim et al. proposed a distributed work-

flow mining approach to discover the workflow process model, incrementally amalgamating

a series of vertically or horizontally fragmented temporal work cases [91]. Sunindyo et al.

proposed an observational framework that supported OSS project managers in observing

project key indicators such as checking conformance between the designed and the actual

process models [92]. They used a hypothesis testing approach to verify the design model

with a runtime event log from bug history data. They obtained a process map for RHEL

bug history data using a heuristic mining algorithm of the process mining tool ProM [92].

Knab et al. presented an approach of extracting general visual process patterns for effort

estimation and analyzing problem resolution activities for ITS [93]. Ashish et al. presented a

generic framework for software process intelligence involving mining and analysis of software

processes [94].

Process mining is applied to data integrated from multiple information systems. Poncin

et al. presented a framework called as “FRASR” (FRamework for Analyzing Software Repos-

itories) that facilitates combining and matching of events across multiple repositories [95].
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They presented an approach to combine related events (belonging to the same case) span-

ning across multiple software repositories, such as mail archives, subversion and bug repos-

itories, followed by the assignment of role to each developer [95]. Poncin et al. presented a

methodology for assessing of the development process component for undergraduate software

engineering projects [96]. Song et al. applied process mining technology to common event

logs of information systems for behavior pattern mining [97]. They created one input data

for behavior pattern mining from event logs of five different information systems [97].

From the discussed existing studies, we observed that the data from software repositories

is explored for control flow analysis [91][92][97][93] and organizational perspective [95] [96],

using process mining techniques. Also only few of them focused on the ticket resolution

process [95][92][93]. Therefore, different software repositories from different perspectives need

to be analyzed to capture an integrated view of the software maintenance ticket resolution

process and support improvements. In this thesis, we focused on applying process mining to

various software repositories, such as ticketing system, peer code review system, and version

control system, to improve the software maintenance ticket resolution process.

1.3 Thesis Overview

To identify the potential opportunities for improvement in software process management, we

first conducted qualitative interviews and surveys of more than 40 managers in a large global

IT company. The survey provided us with a list of 30 software process management chal-

lenges encountered by practitioners out of which around 10 correspond to ticket resolution

process. This thesis addressed a few of the identified challenges pertaining to the software

maintenance ticket resolution process. We studied different types of software maintenance

tickets, that is, software bug tickets and IT support tickets. As identified from the survey,

there is a need to capture process reality and identify the process inefficiencies. Hence, we

proposed a framework to analyze the data for ticket resolution process from diverse perspec-

tives, by applying process mining techniques. Using the proposed framework, we discovered

the process model that captured the control flow, timing and frequency information about

activities performed during ticket resolution. From the discovered process model, we then
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Figure 1-2: Thesis outline capturing the objective, methodology, and contribution.

studied inefficiencies such as self-loops, back-forth, ticket reopen, timing issues, delay due to

user input requests, and effort consumption. We also analyzed the degree of conformance

between the designed and the runtime (discovered) process model. The data-driven insights

helped to make process improvement decisions. For example, using the proposed framework

on IT support ticket data for a large global IT company we found that around 57% of the

tickets had user input requests in the life cycle, causing significant delays in user-experienced

resolution time. Therefore, we proposed a machine learning based-system that preempts a

user at the time of ticket submission with an average accuracy of around 94% to provide

additional information that the analyst is likely to ask, thus mitigating delays due to later

user input requests.

One of the problems identified from the survey is in-depth understanding of actual process

to effectively identify the opportunities for ticket resolution process improvement. We discov-

ered the detailed process model for ticket resolution process, using the information present

in the comments. To model the detailed process, we extracted topical phrases (keyphrases)
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from the unstructured data (comments) using an unsupervised graph-based approach. The

keyphrases were then integrated into the event log, which got reflected in the discovered

process model. This provided insights that could not be obtained solely from the struc-

tured data (i.e., activities), and these insights could be used to perform the ticket resolution

process more efficiently.

Some code changes are made to resolve a ticket. This change can lead to anomalies, such

as regression bugs. We aimed to detect whether ticket resolution caused some anomalous be-

havior so as to reduce the post-release bugs, one of the important challenges identified from

the survey. To achieve this, we proposed an approach to discover an execution behavior

model for the deployed and the new version using the execution logs that is, runtime print

statements. Differences between the two models were then identified, which allowed pro-

grammers to detect anomalous behavior changes, that is, not consistent with code changes

thereby identifying potential bugs that might have been introduced during code change.

We applied the proposed framework and solution approaches on a series of case studies

on data sets of commercial and open source projects. Through the aforementioned contri-

butions, we explored the potential of applying process mining using various data sources to

improve various aspects of the software maintenance ticket resolution process. Such analysis

usually focuses on identifying the inefficiencies, but as we observed in the thesis, it can also

lead to automation opportunities to make the ticket resolution process more efficient.

This thesis focused on improving maintenance ticket resolution process using process

mining. Figure 1-2 presents the overall approach for the thesis. Overview of the thesis is as

follows:

∙ Chapter 2: Identify opportunities for process improvement using process

mining

In the first stage of the research, we conducted a survey and interview study with

more than 40 managers to identify the software process-related challenges that the

practitioners would like to be addressed using process mining. From the survey, we

identified 30 challenges out of which around 10 pertained to software maintenance. We

attempted to address a few of the identified challenges applicable to software mainte-
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nance ticket resolution process, an important part of software maintenance. This work

is discussed in Chapter 2 of the thesis and published in the International Conference

on Mining Software Repositories (MSR) conference.

∙ Chapter 3: Analyzing ticket resolution using process mining

Ticket resolution is an important part of software maintenance process. As identified

from the survey, analyzing the data generated during the ticket resolution process is

necessary to capture process reality and identify the process inefficiencies. We studied

different types of software maintenance tickets, that is, software bug tickets and IT

support tickets. We proposed a multistep framework for analyzing software reposi-

tories for ticket resolution from diverse perspectives, by using process mining. Using

a multistep framework, we discovered the process model that captured the control

flow, timing, and frequency information about events. We then studied inefficiencies,

such as self-loops, back-forth, ticket reopen, timing issues such as delays due to user

input requests, and effort consumption. We also analyzed the degree of conformance

between the designed and the runtime (discovered) process model. We conducted a

series of case studies on the open-source Firefox browser, Core project, open-source

Google Chromium project, and IT support ticket data for a large global IT company.

The data on tickets were obtained from Issue Tracking System (ITS) for the project

(e.g., Bugzilla). We also used repositories for the peer code review system and version

control system, where available. The proposed multiperspective process mining frame-

work and the case studies to evaluate the proposed approach are presented in Chapter

3 of the thesis, and is published in Innovations in Software Engineering Conference

(ISEC), Asia-Pacific Software Engineering Conference (APSEC), and MSR.

∙ Chapter 4: Reducing user input requests in ticket resolution process

In an industrial context, a ticket is required to be resolved in the defined service-

level resolution time, measured using the service-level clock. Failure to meet this

requirement leads to a penalty on the service provider. After a ticket is assigned

to an analyst (a person responsible for servicing the tickets), they can ask for user

inputs to resolve the ticket. When user input is requested, the service-level clock
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stops to prevent spurious penalty on the service provider. However, this waiting time

adds to the user-experienced resolution time and degrades the user experience. By

applying the proposed multiperspective process mining framework on the tickets of

a large global IT company, we found that around 57% of the tickets had user input

requests in the life cycle. The user input requests caused user-experienced resolution

time to be almost twice as long as the measured service resolution time. We observed

that the user input requests were broadly of two types: real, seeking information from

the user to process the ticket; and tactical, when no information is asked but the user

input request is raised merely to pause the service-level clock. We proposed a machine

learning-based system that preempts a user at the time of ticket submission to provide

additional information that the analyst is likely to ask, thus reducing real user input

requests. We also proposed a rule-based detection system to identify tactical user input

requests. A case study was performed on the same IT support ticket data to illustrate

the usefulness of the proposed preemptive and detection model. This work is discussed

in Chapter 4 and published in the Empirical Software Engineering journal.

∙ Chapter 5: Analyzing Comments in Ticket Resolution Process to Capture

Underlying Process Interactions

Process mining uses largely structured data, namely event logs, and does not leverage

the rich information from unstructured data such as comments and emails. One of

the problems identified during the survey was to facilitate granular understanding of

the process to support improvement decisions. In this chapter, we extracted topical

phrases (key phrases) from the unstructured data using an unsupervised graph-based

approach. The key phrases were then integrated into the event log, which subsequently

got reflected in the discovered process model. This provided insights that could not

be obtained solely from structured data, which can be used to identify process im-

provement opportunities. To evaluate the usefulness of the approach, we conducted a

case study on the ticket data of a large global IT company. This work is discussed in

Chapter 5 and is under submission.

∙ Chapter 6: Identifying changes in runtime behavior of a new release to
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facilitate anomaly detection

To resolve a ticket, some code changes are made that could lead to an anomaly such

as regression bugs. In this chapter, we proposed an approach to discover execution

behavior model for the deployed and the new version using the execution logs (which

contained outputs of all the print statements along with related information such as

time, thread ID, statement number, and so on). Differences between the two models

were then identified and presented graphically as regions within the discovered behavior

model. This allowed programmers to identify anomalous behavior changes that were

not consistent with code changes, thereby identifying potential bugs. To evaluate the

proposed approach, we conducted case studies on Nutch (open-source application), and

an industrial application. This work is presented in Chapter 6 and is published at the

International Conference on Service-Oriented Computing (ICSOC).
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Chapter 2

Identifying Opportunities for Software

Process Improvement Using Process

Mining

We aimed at identifying the software process−related challenges that the community in

practice would like to be addressed using novel applications of process mining. To achieve

this, we conducted a two-phase survey and interviews with managers at Infosys Limited1,

a large, global, software company employing more than 170000 software professionals. It is

a CMM 5 company with well−defined processes in place. We first conducted a survey to

identify the software process management challenges, followed by a second survey to analyze

the importance of the identified challenges.

Several studies aimed at understanding the needs and questions of developers by means of

surveys and interviews. The study that is most closely related to the work presented in this

chapter is that by Begel et al. which cataloged 145 questions grouped into 12 categories that

software engineers would like data scientists to investigate [98]. The study also identified

the most important and most unwise problems based on rating survey with 607 Microsoft

engineers [98]. Phillips et al. interviewed 7 release managers at a large software company

to identify the information required for integration decisions when releasing software, and

organized around 10 key factors [99]. Fritz and Murphy interviewed 11 developers to identify
1http://www.infosys.com/
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the questions they would like to ask but the support to integrate different kinds of project

information was lacking in the study [100]. LaTozo et al. proposed 19 problems from their

own experience as software developers and discussed them with other developers to determine

the seriousness of each problem [101]. Sillito et al. categorized 44 different kinds of questions

that developers ask about a code base during a change task [102].

From our survey, we identified 30 process management challenges spanning across dif-

ferent phases of the software development lifecycle (SDLC). Of the 30 process management

challenges, more than 15 corresponded to software maintenance. In this thesis, we attempted

to address a subset of the problems pertaining to software maintenance, specifically the ticket

resolution process. This chapter describes the survey study and its findings. More details of

this study are given in reference [103].

For reference and benchmarking, we have made surveys, collected responses and consol-

idated lists for both the phases publicly available2.

2.1 Survey to Identify Process Management Challenges

In the first phase, we conducted an open-ended online survey and interviews to identify the

process management challenges encountered by managers and the benefits of solving those

challenges. The interviews were conducted only for the participants who volunteered for

in-person discussion instead of filling the online survey. First we performed a pilot study

to improve the survey, followed by final data collection. The collected responses were open

card sorted to groups having similar responses, where each group was represented using a

generic problem statement.

2.1.1 Pilot Study

We conducted a pilot study to improve the survey before sending it to the target audience.

We included only the definition of process mining to quickly introduce process mining to the

participants and set the context.

The initial question asked in the survey was as follows:
2https://github.com/Mining-multiple-repos-data/QualitativeStudy
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Process Mining of software repositories involves extraction of useful information

from event logs recorded by Information Systems (such as Bug Tracking System,

Version Control System, SCMs, E-mails, Peer Code Review System) used during

the SDLC. Suppose you are given an opportunity to benefit from the expertise of

process mining specialists team, where the team can process mine the data stored

in repositories during SDLC and solve problems related to software development

and maintenance process.

Please list up to three problems or inefficiencies that you encounter

during the software development process management and you would

like the process mining team to solve for you. Also, mention the

benefits you will have if the problem is solved.

The survey was given to three participants with management experience and we observed

them while they filled the survey sheet. Two of them asked for some examples of applications

of process mining as they found it difficult to understand the kind of problems that would

meet the criteria. Although one participant directly filled in the survey mentioning the

challenges such as high attrition rate and the difficulty in requirements gathering, these

were not aligned with our objective. Therefore, we added the examples of process mining

applications along with the definition to give the participants a better idea of the domain.

Based on the responses of the pilot study, we added the following examples to the initial

survey question:

∙ Performance (Time) Analysis: Analyze inefficiencies such as most time−consuming

activities (bottlenecks) in the process.

∙ Process Compliance Checking: Detect inconsistencies with the defined process

and flag anomalies.

∙ Control Flow Analysis: Discover the actual process from the execution logs and

analyze activity sequence to better understand the actual runtime process.

∙ Organizational Analysis: Analyze individuals, team coordination and interactions

with the process.
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Henceforth, the improved survey was sent to a sample of eligible professionals with project

management experience. Our collaborator at Infosys explained that most professionals who

were engaged in significant project management activities had titles such as Team Lead (TL),

Project Manager (PM), Senior Project Manager (SPM), Group Project Manager (GPM), and

Principal Technical Architect (PTA) etc. Therefore, we limited our attention to the people

of this title at the Bangalore location where we were working (this work was done by the

author as part of her internship at Infosys). Of approximately 500 eligible professionals, we

randomly selected 300 and requested them to fill the survey (online or through an in-person

discussion).

2.1.2 Participants and Data Collection

Participants for the survey were purposively sampled to ensure that they met the criterion of

having project management experience. We specifically targeted participants from different

software development and maintenance departments to capture the diverse perspectives of

the practitioners involved in the management activities. Using the refined survey from

the pilot study, we asked practitioners to solicit the challenges and inefficiencies that they

would like the process mining team to analyze. Also, to check that our criteria for project

management experience were being met, we inquired about their role, work experience and

project management experience (in years).

Overall, 46 practitioners (out of 300 randomly selected participants) responded, of which

12 opted for an in-person discussion. The response rate was around 15%, which was compa-

rable with the response rate of similar free-text surveys [98]. Of these 46 participants, around

26% were TLs, 33% were PMs, 28% were SPMs or Senior Technology Architect, and the

remaining (approximately 10%) were others such as Delivery Managers, Group Leaders and

Quality Managers. The total work experience of the respondents ranged from 8 to 21 years,

and the project management experience ranged from 1 year to 14 years, with 25 participants

having more than 5 years of project management experience. Four respondents chose not to

mention their experiences.

Interview: We conducted a semi-structured interview with the 12 participants (out of

46) who opted for in-person discussion instead of filling the online survey. Using the survey
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questionnaire as the guide, the interviewer gave the interviewee an overview of process mining

followed by the objective of the study. Most participants described a scenario along with the

context that was noted by the interviewer. The survey responses from other participants also

included long statements describing the scenario and benefits. Very few responses stated the

inefficiencies directly. A major difference between the survey responses and interviews was in

terms of context understanding. During the interview, the interviewer had the opportunity

to probe and ask follow−up questions for better understanding. Conducting interviews and

getting a detailed idea on perspectives discussed in the interview helped better interpret the

other survey responses as well.

We gathered 130 items as a result of this survey and interview. In this survey, we

focused on identifying the problems. For determining importance, we conducted a second

survey about the importance of solving the generic problems formulated using 130 items.

Inspired by the study by Begel et al. [98], we believed that having a separate survey for

importance analysis could give a better indication for the importance (support) of each

identified problem. This allowed keeping the first survey focused on identifying problems

and the second one focused on analyzing the importance of the identified problems. We

discarded 19 points from the survey responses as we believe that they could not be addressed

by mining data from software repositories and hence were not aligned with the context of

the study. For example, the following responses were filtered out:

∙ “Lack of product culture in the services industry.”

∙ “Clarity of nonfunctional requirements; migration projects do not have proper testing.”

∙ “Impact elements are not easily defineable.”

A complete list of discarded responses is made publicly available3. Specifically, refer to

Phase-1.xlsx in which the rows with value as “WI”: for the column, Problem Statement,

correspond to discarded responses.

3https://github.com/Mining-multiple-repos-data/QualitativeStudy
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2.1.3 Analyzing Survey Data for Formulating Problem Statements

We observed that many points, though expressed differently, had essentially the similar un-

derlying problem. On the basis of the similarity in the problems, we sorted the gathered

items using open card sorting, that is, groups unknown at the outset [104][105]. Multi-

ple iterations were performed for sorting until the author and her two colleagues were in

agreement. As a result, valid 111 items were sorted into 30 groups in which each of them

represented a different problem. We noticed that more than one problem was stated in some

items, and thus included in multiple groups. A problem statement was formulated for each

group, leading to 30 problem statements. The formulated problem statement was an ab-

stract representation of the original grouped items because it did not include specific details

of each item grouped together. For example,

For formulated problem statement: During issue resolution, detection and analysis of

PING-PONG patterns due to bug tossing between developers to reduce resolution time, the

following three responses (as stated by respondents) belonged to the group:

∙ “Quite often an issue is reported as a defect. However, developers do not consider it to

be a defect or state that it belongs to some other component. A lot of efforts go waste

in this tossing around. Can we improve the process to reduce such cases?”

∙ “Unnecessary delays and blame game. Reporting of defects often leads to delay and

blame game. Understand the patterns with cause to avoid such situations.”

∙ “Ping-Pong patterns between various teams when an issue is reported.”

Similarly, we abstracted other groups using brief problem statements. Each statement had

task (or actual problem) as the first component followed by cause and benefit as the

second component. We intentionally structured the problem statements like this considering

the second survey of the study because we wanted the problem to act as a trigger. For

instance, in the aforementioned example, detection and analysis of Ping-Pong patterns is

the problem and due to bug tossing between developers to reduce resolution time is cause

and benefit. The original detailed items for every group are not presented here due to

limited space, but are included in Appendix A. Also, we classified the formulated problem
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statements into various process mining categories and identified the possible benefits of

addressing challenges from each category, which are reported in reference [103].

Next, we conducted a follow-up survey in which the objective was to identify the impor-

tance of the 30 generic problems identified through the first survey. Since the first survey

focused on the variety of the identified challenges, this survey helped establish the importance

(an indicator of support) and assess whether the identified problems were worth solving.

2.2 Survey to Determine the Importance of the Iden-

tified Challenges

The survey identified 30 problems with 5 options as follows:

[ Essential | Worthwhile | Unimportant | Unwise | I don’t understand ],

Where the question asked was:

We have identified some process−related problems encountered by practitioners

while managing IT projects. In your opinion, please indicate how important it is

to have a process mining team solve this problem where the significance of each

option is:

∙ Essential: The problem poses many challenges and should be dealt with on a high

priority.

∙ Worthwhile: The problem is important to solve and will help the managers.

∙ Unimportant: It is not worth solving the problem.

∙ Unwise: Team is discouraged to solve the problem.

∙ I don’t understand: Problem statement is not clear or difficult to understand.

Mention any other process−related problems that you encounter and are not listed

in the questionnaire.

29



Inspired by a similar study [98] for identifying the importance of answering questions

identified from the first survey, we decided to opt for the aforementioned options. These

options met the need for both positive (Essential and Worthwhile) and negative (Unim-

portant and Unwise) scale with variation in intensity. As the problems were succinct, the

participant might find it difficult to understand them without a detailed context. Therefore,

the fifth option allowed expression of a problem not understood. As an introduction, we

included only the definition of process mining in this survey as the focus was to validate the

identified problems. We mentioned the significance of each option to avoid any differences

in understanding. To ensure that the participants could mention any other challenges, if

missing, we added a free text question in the end. Also, we asked the following basic details:

current role, total work experience and total project management experience.

2.2.1 Participants and Data Collection

A consolidated list of 30 problems with 5 options was sent to 160 distinct randomly selected

practitioners with the same characteristics of having project management experience and

having handled teams. We sent the survey to distinct participants (i.e., from the remaining

200 professionals out of the initial set of 500), excluding the participants of the first survey,

to mitigate the confirmation bias. To reduce the likelihood of confirmation bias, we did not

mention that the problems were identified by surveying their colleagues. Also, we ensured

that the question asked in the survey did not favor any problem statement. We received

responses from 43 people out of 160 with a response rate of around 27%, which was almost

double the response rate of the previous survey. One of the major reasons for the increased

response rate was that the second survey was closed type where the respondent had to

select one out of the given options. While answering all the questions was preferred, a

respondent could answer as many as possible due to the large number of questions. We got

1262 responses instead of 1290 (43×30), indicating that only 28 (2%) were unanswered. The

participants covered a broad spectrum in terms of role, type of projects, and experience. We

had participants with total work experience ranging from 6 years up to 25 years, with a

median of 12.5 years. Similarly, the project management experience ranged from 1 year to

15 years with a median project experience of 6 years, thus covering a wide spectrum.
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Out of 1262 responses, very few (only 42) were I don’t understand. Two reasons accounted

for this: either the respondent did not have experience with that kind of project and therefore,

found it difficult to understand it, or our summarization was not clear. For only one problem

statement, nine respondents selected not understandable, which essentially signaled that the

formulation required more clarity. For other statements, we noticed that at most three

respondents selected the option I don’t understand, which could be attributed to diversity in

roles, experiences, and domain. Essential and Worthwhile were referred to as positive (+𝑣𝑒)

responses, and Unimportant and Unwise were referred to as negative (−𝑣𝑒) responses. We

observed that most of the responses (1088 out of remaining 1220) were positive and believed

that the confirmation bias was minimal because we did not inform participants about the

second survey that the problems were identified by conducting a survey/an interview with

their colleagues [104] and asked the survey question such that no problem statement was

favored. Some of the possible reasons for the negative response to a particular problem were

as follows:

∙ The problem was already solved to a satisfactory level and was not worth spending

resources in solving it further. It was based on a remark, “We already have a solution

for this,” mentioned by a participant as a comment along with a question where Unwise

was selected as an option.

∙ The participant had never faced that problem and felt it was not really a problem.

For example, we got similar comments such as “Some of the listed problems are project

and domain specific,” from a couple of respondents.

The problem about identifying the group of ACTIVE VS INACTIVE CONTRIBUTORS,

GENERALIST VS SPECIALIST by analyzing the performance of individuals participating

in the process received maximum (that is, 17) negative responses. We do not have specific

comments from the respondents to explain a high number of negative responses to this

particular problem. One possible explanation may be that the respondents believed that

such performance-based classification could increase work pressure and competition within

the team.

We received a few comments in the free text question. No new problem emerged as a
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How important is it to have a process mining team solve this problem?

+ve : [Essential|Worthwile]                                        -ve : [Unimportant|Unwise]

NIM = ((C(E) + 0.75 X C(W) - C(UW) - 0.75 X C(UI) )/ No. of responses

1 0.50.9 0.8 0.7 0.40.6 0.3 0.2 0.1

!!Very important Important Less important

More 
important

Not worth 
solving

0 to -1

!! Not worth solving

Figure 2-1: Net Importance Analysis

result of those comments. Most of the comments were general remarks on the listed problems

where the most common were the following:

∙ “Need to identify the data required for solving these problems, thus ensuring we have a

system in place to automatically fetch the required details.”

∙ “Most of the identified problems are associated with the maintenance phase; can we

apply process mining to improve the requirements phase, which is a perennial problem?”

The second one helped us notice that only a few problems involved the requirement-

gathering phase. One possible explanation could be that it was difficult to find event logs

because requirements gathering was a communication-intensive phase resulting in the Soft-

ware Requirement Specification document. Thus, the participants were refrained from solic-

iting requirement-phase challenges.

Also, we proposed the Net Importance Metric to measure the net importance of solving

each problem using the count of positive/negative responses as discussed below.

2.2.2 Net Importance Analysis

We proposed a Net Importance Metric (𝑁𝐼𝑀) to objectively measure the importance of

solving each problem in which the counts of positive and negative responses were taken as

input parameters (refer to Figure 2-1), that is, NIM,

𝑁𝐼𝑀 = 𝐶(𝐸) + 0.75× 𝐶(𝑊 )− 𝐶(𝑈𝑊 )− 0.75× 𝐶(𝑈𝐼)
𝐶(𝐸) + 𝐶(𝑊 ) + 𝐶(𝑈𝑊 ) + 𝐶(𝑈𝐼) + 𝐶(𝐷𝑈)
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where

𝐶(𝐸) = Number of responses as Essential

𝐶(𝑊 ) = Number of responses as Worthwhile

𝐶(𝑈𝑊 ) = Number of responses as Unwise

𝐶(𝑈𝐼) = Number of responses as Unimportant

𝐶(𝐷𝑈) = Number of responses as I don’t understand.

Metric 𝑁𝐼𝑀 measures the net importance of solving a problem based on responses from

the participants. We used this metric to determine the joint effect of positive and negative

responses. Essential expresses a stronger need to solve a problem as compared with Worth-

while. Unwise strongly discourages the team from spending efforts in solving a problem,

while Unimportant reflects the same with a comparatively weaker intensity. Therefore, we

used multiplier factors of 1, 0.75, and −1,−0.75 to scale the intensity of positive and negative

responses, respectively. The difference between (+𝑣𝑒) and (−𝑣𝑒) responses was normalized

for comparison because all the problems did not have the same number of ratings.

As depicted in Figure 2-1, the value of 𝑁𝐼𝑀 lies between −1 and 1. 1 corresponds to

the most important, and 0 corresponds to the less important, that is, the relative importance

of solving a problem increases with the increasing value of 𝑁𝐼𝑀 . It can be attributed to

the fact that some problems have more impact and need to be dealt with on a high priority.

Although some problems exist, they do not require immediate attention. The value of 𝑁𝐼𝑀

is less than 0 (indicated in red) for problems with more negative responses. Thus, solving

these problems is not recommended from practitioners’ points of view. In Table 2.1, the

problems are arranged in the decreasing order of 𝑁𝐼𝑀 . We observed that all the listed

problems had 𝑁𝐼𝑀 greater than 0. Thus, all were considered worth solving, although some

were more important than others.

Effectively, all the listed problems were validated by experienced professionals. Prac-

titioners believed that solving some problems was more important compared with others.

Therefore, as a process mining specialist, one can make an informed choice on which problems

to focus on and solve first.
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2.3 Survey Results

Table 2.1 presents a list of formulated 30 process management challenges, each corresponding

to a group identified from the survey and interviews. As determined from the follow−up

importance survey, a count of both +𝑣𝑒 and −𝑣𝑒 responses for each problem statement

is also presented in the table. The negative responses were significantly less, indicating

none of the identified problems was absolutely irrelevant. The challenges were arranged

in decreasing order of importance (as determined by the NIM metric). Any statement with

one or more items pertaining to software maintenance is highlighted with [𝑀 ], indicating the

problem statement belonged to the maintenance phase. We noticed that around 20 identified

challenges were for the software maintenance process, of which 12 referred to the ticket

resolution process in maintenance. In the rest of the thesis, we attempt to address some of

the ticket resolution process challenges (as indicated by ♣ in Table 2.1) using process mining

techniques. Some of the related problems which were about analysing ticket resolution

process (such as 𝑃1, 𝑃5, 𝑃15, 𝑃23, 𝑃24 and 𝑃27) were grouped together and explored in

chapter 3.

Table 2.1: List of problem statements formulated for each group along with the count of
positive (+𝑣𝑒) and negative (−𝑣𝑒) responses. Statements with [𝑀 ] belong to the mainte-
nance phase; the italicized ones are for the ticket resolution process; and ♣ are the ones we
attempted to address.

ID Formulated Problem Statement +ve −ve NIM

[𝑀 ]

♣P1

Identify BOTTLENECKS and inefficiencies causing a delay in

the ticket resolution process to take remedial actions and have

better estimation in future. [Chapter 3]

42 0 0.92

[𝑀 ]

♣P2

Enable early detection and PREVENTION OF DEFECTS in-

stead of fixing them during the later stage by understanding

patterns of escaped defects. [Chapter 6]

41 0 0.91

P3 Avoid putting efforts on LESS SIGNIFICANT ACTIVITIES

by identifying redundant or unnecessary steps of process.

41 1 0.89
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P4 Automatic ADAPTATION OF PROCESS according to dif-

ferent project specifications, that is, design process based on

knowledge of similar successful projects instead of selecting

process only on the basis of experience.

43 0 0.85

[𝑀 ]

♣P5

Inspect REOPENED issues to identify the root cause and rec-

ommend verification for future issues based on learning from

issues reopened in the past. [Chapter 3]

41 1 0.84

[𝑀 ] P6 Need for efficient TASK ALLOCATION mechanism by consid-

ering individuals’ skills, interests, and expertise as well as team

compatibility for better utilization of resources.

40 2 0.83

P7 Various approvals (such as managers’ approval) are part of soft-

ware development life cyle (SDLC) and need better manage-

ment. Design a process for seamless approvals to reduce delays.

40 3 0.79

P8 Mechanism for CONTINUOUS PROCESS EVOLUTION

based on best practices of individuals who exercise the pro-

cess. Therefore, improve process by encouraging on-the-job

learnings of people rather than dependence on process design-

ers.

39 2 0.76

[𝑀 ] P9 Improve effectiveness of CODE REVIEW PROCESS AND

STANDARDIZATION by redesigning check list and updating

code analyzers based on the defects reported during testing.

39 2 0.74

P10 Facilitate BETTER INTEGRATION between different silos by

reconstructing the process, thus reducing rework happening

due to differences in understanding.

36 3 0.71

[𝑀 ] P11 Handle CHANGING TEAMS seamlessly by analyzing interac-

tion pattern between team members and team dynamics.

38 2 0.70

P12 Design a technique to TRACE ADHERENCE WITH RE-

QUIREMENTS and adapt process automatically with chang-

ing requirements.

36 3 0.69
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P13 PEOPLE VS PROCESS: Identify which factor contributed to

what extent toward the success and failure of the project.

39 4 0.69

[𝑀 ] P14 Simplify tracking of the whole CODE REVIEW PROCESS to

identify inefficiencies quickly.

37 4 0.67

[𝑀 ]

♣P15

During issue resolution, detection and analysis of PING-

PONG patterns due to bug tossing between developers to reduce

resolution time. [Chapter 3]

36 3 0.67

P16 Improve PROJECT PLANNING AND ESTIMATION by com-

plimenting it with the insights derived from event log mining

of similar projects done in the past.

38 5 0.66

[𝑀 ]

♣P17

Investigate the LEAD TIME for issue resolution by analyzing

issue resolution process from TIME PERSPECTIVE and thus

increase timely resolutions. [Chapter 4]

37 5 0.64

P18 Design more meaningful QUALITY METRICS by understand-

ing run time process practices to precisely identify the scope of

improvement.

35 5 0.63

[𝑀 ] P19 Equip novices with the KNOWLEDGE OF EXPERIENCED

PRACTITIONERS by associating the efficiency of adopted

process with the experience of practitioners.

36 4 0.63

[𝑀 ]

♣P20

Facilitate in-depth understanding of point where things went

wrong by deriving and understanding actual process at a MORE

GRANULAR LEVEL. [Chapter 5]

36 5 0.63

P21 Continuous check on SCHEDULE ADHERENCE is a complex

task. Design an automated way to track and preempt if any

deviations.

36 6 0.60

[𝑀 ] P22 Relate bugs with the ACTUAL STAGE OF INCEPTION by

understanding issue resolution life cycle along with other rele-

vant attributes.

34 5 0.60
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[𝑀 ]

♣P23

Uncover DEVIATIONS between the actual process followed by

the team and the defined process, as well as their cause and im-

pact on overall outcome and identify the set of people exhibiting

more deviations. [Chapter 3]

36 6 0.59

[𝑀 ]

♣P24

INTEGRATE MULTIPLE STANDALONE SYSTEMS used

during SDLC to solve data and process redundancy challenges,

and obtain a holistic view. [Chapter 3]

34 5 0.57

[𝑀 ] P25 Analyze code review life cycle to identify developers who are

not reviewing their code properly before they submit it for ex-

ternal review and the deviations from defined checklist. It will

help take corrective actions and reduce defects during testing

phase.

33 7 0.53

[𝑀 ] P26 Mechanism to manage and keep track of SVN check-ins process,

that is, activity sequence for merging and branching as it is very

important and can help take informed decisions.

27 5 0.49

[𝑀 ]

♣P27

Capture the ACTUAL STATUS (reality) of project or any task

by discovering run−time process from event logs instead of cur-

rent manual practice. [Chapter 3, and 4]

31 8 0.48

[𝑀 ]

♣P28

Trace the complete flow and understand WHICH ISSUE

LEADS TO WHICH CODE CHANGE by analyzing event logs

for issue resolution in combination with the code modified in

VCS. [Chapter 3]

31 9 0.45

[𝑀 ]

♣P29

Perform COMPARATIVE ANALYSIS OF TICKETS along

dimensions such as component, owner (analyst), reporter, type

such as performance, regression and security, final resolution

such as duplicate, invalid and fixed, and turnaround time to

derive useful insights for improvement [106].

32 10 0.44
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[𝑀 ] P30 Identify the group of ACTIVE VS INACTIVE CONTRIBU-

TORS, GENERALIST VS SPECIALIST by analyzing perfor-

mance of individuals participating in the process.

24 17 0.14

Some of the identified problems have already been studied by researchers, such as 𝑃3

[107], 𝑃5 [36][56], and 𝑃6 [108]. There are many problems that have not been addressed

sufficiently. Based on the responses from the survey, we believe that addressing the remaining

problems will be useful for practitioners.

2.4 Threats to Validity

In this study, we surveyed and interviewed participants performing managerial roles for di-

verse project types such as development projects, maintenance projects, and support. Never-

theless, they worked in the same organization using similar processes and guidelines. Though

having diverse participants from the same organization enabled deeply exploring experiences

from several perspectives, organizational culture might create a bias because both the sur-

veys were conducted in the same organization. Although the organization was huge and

CMM 5, the problems encountered by its managers might not be as important to managers

of other companies with different organizational cultures. As the questions identified covered

a vast spectrum of process mining types, we expected them to reflect problems encountered

by managers, which the team of process mining specialists could solve.

We included examples to illustrate process mining applications in the first survey. They

shaped the thoughts of respondents and made them think in the direction of similar chal-

lenges. However, we preferred to include examples to ensure that relevant problems were

mentioned by practitioners. This decision was inspired by the pilot study, which was con-

ducted without examples and resulted in responses that were not aligned with our objective

of identifying process managements challenges, which could be addressed by analyzing data.

Not all challenges belonged to the categories included as example in the study.

Some problems were directly stated by respondents, while others were inferred from

the long statements received in the responses. Informal discussion during the interview
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complimented the process of generic problem formulation, but the interview was conducted

with a small set of respondents. During the second survey, importance was influenced by

individual differences among the participants themselves.

We observed that most of the ratings for the second survey were positive, which might

be due to confirmation bias. However, we tried to reduce the likelihood of confirmation

bias by not telling the participants of the second survey that the problems were identified

by conducting a survey/an interview with their colleagues. Also, no particular problem

statement was favoured in the designed survey. Further, from the ratings of participants, we

observed response distribution across various importance ratings and high negative responses

for specific problems indicating a minimal confirmatory bias.

2.5 Summary

By conducting an online survey and interview study, we identified 30 different software pro-

cess management challenges encountered by managers. In addition to this, we conducted a

follow-up survey with distinct participants to validate the importance of solving identified

challenges. To the best of our knowledge this is the most comprehensive catalog of chal-

lenges published to date that can be addressed by process mining of software repositories.

Effectively, the result of the survey, that is, the list of identified challenges, was a contribu-

tion in itself that could provide an important input to researchers for selecting a problem.

While process mining can be one of the approaches, the challenges may also be addressed

using different techniques. The scope of the rest of the thesis is to use process mining by

attempting to address a few of the identified challenges. We hope that other researchers will

also address the other challenges.

In the remainder of the thesis, we focus on a few challenges related to the software

maintenance phase. Many challenges (more than 15) were identified for this. Specifically,

we analyzed the ticket resolution process as an important part of a software maintenance

process, and 12 out of all identified problems referred to the ticket resolution process. We

attempted to address a subset of these problems (around 10 as indicated by 𝑐𝑙𝑢𝑏𝑠𝑢𝑖𝑡 in

Table 2.1) by applying process mining techniques on logged data, which is the focus of the

39



remaining thesis. We selected this subset because many problems were identified for the

ticket resolution process and the data were available to illustrate the following:

∙ The problems identified in the survey (𝑃1, 𝑃5, 𝑃15, 𝑃23, 𝑃24, 𝑃27, 𝑃28, 𝑃29, and

𝑃30) highlighted the need to analyze the data generated during the ticket resolution

process to capture process reality and identify the process inefficiencies. We chose to

address this issue cutting across many identified problems. In Chapter 3, we propose a

framework to analyze the ticket resolution process from diverse perspectives by mining

the logs from one or more information systems (software repositories). This includes the

discovery of process model capturing control flow, timing and frequency information

of events, and further study inefficiencies such as self-loops, back-forth (ping-pong),

ticket reopen, timing issues, conformance of the discovered model against the designed

model, and comparative analysis of the process along different dimensions.

∙ In 𝑃17, the practitioners highlight the need to investigate lead time for issue (ticket)

resolution and thus reduce the delays in ticket resolution. In Chapter 4, we analyze

the ticket resolution process using the proposed framework and observe that there are

many user input requests causing significant delays in the resolution time. Hence, we

propose a machine learning-based system that preempts the user to provide required

additional information at the time of ticket submission and thus mitigate delays due

to later user input requests.

∙ Problem 𝑃20 highlights the need for understanding the process reality at a more gran-

ular level. Therefore, we explore unstructured data generated during process execution

to derive insights that cannot be obtained solely from the structured data (as discussed

in Chapter 5).

∙ Some code changes are made to resolve a ticket. This change can lead to anomalies,

such as regression bugs. One of the top five problems identified in the survey is de-

tecting bugs at an early stage, that is, 𝑃2. In Chapter 6, we investigate the usefulness

of process mining to automatically detect bugs and inconsistencies in fast-evolving ap-

plications before the application was released. Similar to the ticket resolution, bug

40



detection is one of the software maintenance processes. Bug detection is based on the

run-time system logs as opposed to the information obtained from systems supporting

software development (e.g., ticket tracker or version control system).
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Chapter 3

Analyzing Ticket Resolution Using

Process Mining

Ticket resolution is an important part of software maintenance process. Issue tracking sys-

tems (ITSs), such as Bugzilla1 and Mantis2, are applications where tickets are reported.

ITS, peer code review (PCR) systems (such as Gerrit3 and Rietveld4), and version con-

trol systems (VCS, such as SVN5 and Mercurial6), are work flow management systems that

jointly support the ticket reporting and resolution process in software maintenance. The

free-libre/open-source software (FLOSS) projects, such as Google Android and Chromium,

follow a process consisting of ticket reporting in ITS, patch submission for review in PCR

systems, and committing source code change using VCS. The ticket reporting and resolu-

tion process spanning across multiple systems generates process and event log data that are

archived in these software repositories.

Several projects have defined the ticket resolution process; however, the actual process

being executed may be different from the defined ones. For improvement of the process,

it is essential to identify the actual process being executed, which needs data generated

during ticket resolution process execution. With a suitable representation using process

1 http://www.bugzilla.org/
2 http://www.mantisbt.org/
3 http://code.google.com/p/gerrit/
4 http://code.google.com/p/rietveld/
5 http://subversion.apache.org/
6 http://mercurial.selenic.com/
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execution data, various types of analyses can be performed to identify process improvement

opportunities.

The goals of this work were twofold:

∙ To integrate and transform the data available in various software repositories so that

the actual ticket resolution process can be discovered using process mining and modeled

as a control flow graph, annotated with execution information, that is, frequency and

timing.

∙ To identify potential inefficiencies by analyzing the discovered ticket resolution process

model along various perspectives. The analysis is based on the problems identified

earlier in the survey (given in Chapter 2).

These two goals are discussed in the next sections. To illustrate the utility of the ap-

proach, we performed the case studies on large, long-lived open-source projects, such as

Mozilla Firefox, Core, and Google Chromium, and ticket data of a large global IT company.

For the analysis, we focused specifically on exploring the following problems identified

from the survey (refer to Table 2.1). These were chosen because they are related to the

ticket resolution process and can be analyzed from the process execution logs. Research

contribution toward addressing a problem is mentioned (in italics).

1. Problem 24 from Table 2.1: “INTEGRATE MULTIPLE STANDALONE SYSTEMS

used during SDLC to solve data and process redundancy challenges, and obtain a

holistic view.”

Presented a multistep framework to analyze single and multiple software repositories

simultaneously for the ticket resolution process from diverse perspectives.

2. Problem 27 from Table 2.1: “Capture the ACTUAL STATUS (reality) of project or

any task by discovering the runtime process from event logs instead of current manual

practice.”

Investigated the application of process mining platforms, such as Disco and state-of-the-

art algorithms, for discovering process maps from event logs and thus understanding

the actual runtime process (reality).
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3. Problem 1, 5, and 15 from Table 2.1: “Identify BOTTLENECKS and inefficiencies

causing delay in the ticket resolution process to take remedial actions and have bet-

ter estimation in future,” “Inspect REOPENED issues to identify the root cause and

recommend verification for future issues based on learning from issues reopened in the

past,” “During issue resolution, detection and analysis of PING-PONG patterns due

to bug tossing between developers to reduce resolution time”.

Multiperspective analysis of the discovered process model includes bottleneck identifica-

tion, reopen analysis, loop and back-forth analysis, and anti-patterns.

4. Problem 23 from Table 2.1: “Uncover DEVIATIONS between the actual process fol-

lowed by the team and the defined process, their cause, and impact on the overall

outcome, and identify the set of people exhibiting more deviations.”

Proposed a generic algorithm for quantitatively measuring the compliance between the

design time and the runtime process model for the ticket resolution process.

5. Problem 30 from Table 2.1: “Identify the group of ACTIVE VS INACTIVE CON-

TRIBUTORS, GENERALIST VS SPECIALIST by analyzing the performance of in-

dividuals participating in the process.”

Analyzed from an organizational perspective to extract team-based interaction patterns,

visualization, and metrics such as handover of work, subcontracting, working together

(joint cases), and joint activities.

3.1 Discovering Ticket Resolution Process

The proposed approach (Fig. 3-1) for analyzing the ticket resolution process included mainly

these steps: (1) data extraction, integration, and data transformation, and (2) process dis-

covery, followed by multiperspective process analysis. The analysis of discovered process

model from multiple perspectives (as discussed in Section 3.2), such as time (bottle-neck

identification, delay due to user input requests), control flow (such as loop, back-forth, anti-

patterns), conformance, and case (reopen analysis), is referred to as ‘multi’ perspective.
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Figure 3-1: Framework for discovering the ticket resolution process using process mining and
analyzing it from multiple perspectives.

3.1.1 Data Extraction, Integration and Transformation

We extracted data from software repositories, such as ITS, PCR system, and VCS, using

APIs or web scraping. However, all the data were not available in a single well-structured

data source. The event data were scattered over multiple sources, and efforts were needed

to integrate multiple information systems for end-to-end process analysis. For example,

multiple information systems (e.g., ITS, PCR system, and VCS) were not linked to each

other explicitly, and data formats were different. Also, software repositories do not typically

store data in a process-oriented manner, making the extraction of relevant data more difficult.

Therefore, data extraction is driven by questions rather than the availability of lots of data

[95].

One of the major challenges in software process mining is producing a log conforming to

the input format of process mining tool [95]. Therefore, prior to using process mining for

process model discovery, an event log should be generated using the data from repositories.

An event log is generated with the following attributes: case identity document (ID), activity,

timestamp, and resource (actor) and contextual information (based on the analysis to be

performed). The following activities are performed during transformation:

∙ Case ID selection: Case ID associates all activities pertaining to the same case (ticket

id) to analyze the ticket life cycle. However, integrating multiple information system

is not trivial [95] because no common ID exists to explicitly link them. For instance,

ticket in the ITS is identified by a ticket ID, patch for the ticket in the PCR by a

patch ID, and commit in the VCS by a revision ID. Therefore, we need to identify
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all the patches in the PCR for a ticket and the corresponding commits in the VCS,

and then represent all the events spanning across different information systems using

a consistent case ID, say a ticket ID, and thus capture a ticket’s end-to-end flow.

∙ Activity identification and selection: To generate an event log, we need to identify a

list of important activities capturing the progression of a case (e.g., ticket resolution)

during its life cycle. Many activities are captured in the information system (such as

ITS, PCR, and VCS), but they may not be relevant for the analysis to be performed.

The selection of the activities is driven by the analysis to be performed. Activities not

relevant for the analysis need to be removed from the event log to avoid unnecessary

complexity in the discovered process model. The list of selected activities can be

confirmed with the manager(s) to ensure that we do not miss any activity that can

have an impact on the analysis to be performed. For example, if one is not interested

in analyzing the impact of priority or severity on the process life cycle, then it need

not be captured as an activity in the discovered process model.

∙ Extract implicit activities: Some activities are not stored explicitly and need to be

derived by parsing action comments or by linking multiple information systems.

∙ Handle missing data: Logged data may be incorrect or incomplete. Missing data are

handled by imputation, that is, missing data are replaced with substituted values. For

example, if time stamp is missing for some events, it is replaced with imputation.

∙ Resolving time conflicts: Sometimes data are captured in different time zones for a

global organization and thus need to be handled carefully. Time stamps are converted

to a consistent time zone on the basis of the geographical location (captured for the

ticket) where the ticket is submitted and resolved.

3.1.2 Process Discovery

The event log obtained after transformation for all the tickets is then used for process

mining. Many process mining tools are available, such as ProM (open source) [109] and

Disco (commercial) [110], to discover process models. A discovered process model represents
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the control flow information of the activities, timing, and frequency of the involved activities,

as recorded in the logs. The transformed event log derived from ticket resolution data is

imported into Disco7 to discover a process model depicting the process runtime behavior.

The Disco miner is based on Fuzzy miner, a process mining algorithm that can be applied to

less-structured processes, mostly for real-life environments [83]. Two fundamental metrics are

used in the fuzzy miner: (1) significance and (2) correlation. Significance can be determined

for both event classes (activities) and binary precedence relations over them (edges). It

measures the relative importance of behavior, that is, the level of interest in events, or their

occurrence after one another. Correlation, on the contrary, is only relevant for precedence

relations over events. It can be measured in different ways, such as determining the overlap

of data attributes associated with two events. More closely correlated events are assumed

to share a large amount of their data. Based on these two metrics, the process is simplified

as follows:

∙ Highly significant behavior is preserved, that is, contained in the simplified model.

∙ Less significant but highly correlated behavior is aggregated, that is, hidden in a cluster

within the simplified model.

∙ Less significant and lowly correlated behavior is abstracted from, that is, removed from

the simplified model.

A ticket ID is selected as a case ID for process model discovery to associate all activities

pertaining to the same ticket (issue). A discovered process model is represented as a graph

consisting of nodes and directed edges, where each node corresponds to an activity and

directed edges depict the ordering relationship between the activities. Timing and frequency

information is also labeled on the discovered process model for every activity and transition.

Process discovery is the first step for an effective process analysis; therefore, we discovered

a process in all the presented case studies.

7Availed academic license

48



3.2 Analyzing the Discovered Process Model from Mul-

tiple Perspectives

With the extracted process model, represented as a control flow graph, we can do various

types of analysis. In this chapter, we mentioned a few, which we performed on the process

model discovered for the ticket resolution process.

3.2.1 Bottleneck Identification

We identified a specific part within the discovered runtime process model, which was rela-

tively time-consuming and reduced the overall performance of the end-to-end process, that

is, bottleneck. Different processes can be discovered each corresponding to specific process

instances that is, referred to as process variants. For instance, process model discovered for

tickets with priority as high and low are two different process variants. We classified the

bottlenecks into the following two classes on the basis of pervasiveness across the process

variants:

1. General bottleneck: Time-consuming transitions in a stand-alone process without com-

paring across the variants.

2. Exclusive bottleneck: Transitions that were inefficient in some process variants com-

pared with others. Even if some transitions are present in all process variants, the

average time (after removing outliers) for the same transition might still significantly

vary across the variants. This implies that the same activity is performed more effi-

ciently in some process variants, suggesting the possibilities of improvement in others.

We proposed the bottleneck ratio (BNR) to identify such instances:

𝐵𝑁𝑅 = |(𝑃𝑡 − 𝑃 ′
𝑡)|

𝑚𝑖𝑛(𝑃𝑡, 𝑃 ′
𝑡)

where 𝑃𝑡 is the average time for transition t in process variant 1,

and 𝑃 ′
𝑡 is the average time for transition t in process variant 2.

BNR measures the extent of difference with respect to minimum average time taken
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for the same transition. If BNR ≥ 1, then the time taken by a process variant is at

least double of minimum average time for the transition. We suggest using BNR to

compare the two processes. However, if the number of process variants is more than

two, then Adjusted Box Plot can be used [111]. An outlier in the box plot corresponds

to the bottleneck, indicating a need for improvement.

From the discovered process, we identified bottlenecks in Case Study I (Section 3.3).

3.2.2 Reopen Analysis

Reopened bugs8 (bug is reported as a ticket) increase the maintenance costs, degrade the

overall user-perceived quality of the software, and lead to unnecessary rework by practitioners

[36]. If a fair number of resolved bugs are reopened, instability is indicated in the software

system [35]. Reopening of bugs has significant importance in open-source and commercial

software maintenance projects. Understanding bug reopening is of significant interest to the

practitioner’s community as part of characterizing the quality of the bug-fixing process [35].

Therefore, the analysis of reopened bugs is expected to help process owners take preventive

actions to minimize the reopening of bugs.

Shihab et al. [36] showed that the last status of the closed bug was an important influ-

encing factor for the reopening. Depending on this status, the reasons for bug reopening

could be as follows [35] [36]:

∙ Wontfix/Invalid/Incomplete/Worksforme: Clear steps to reproduce and additional in-

formation become available after the bug closure, allowing one to better understand

the bug and determine its root cause.

∙ Duplicate: A bug accidentally marked duplicate due to similar symptoms or title

matching with the existing bug without a proper understanding of the root cause.

∙ Fixed: Incompletely or incorrectly fixed bugs due to poor root cause understanding,

regression bug (the bug reappears in the new version), or a boundary case missed

during testing.
8Bug was once resolved, but the resolution was deemed incorrect.
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∙ Verified: Incorrectness of the resolved bug verification process realized later or extra

information becomes available, triggering the reopening of bug.

If many tickets are reopened, they can be mitigated using the reopen prediction solution

as suggested in the existing studies [56][36]. Xia et al. [56] proposed an automatic, highly

accurate predictor for reopened tickets (bugs), ReopenPredictor. It combined classifiers

trained for three different sets of features, that is, description, comments, and metadata.

Shihab et al. [36] built decision trees for the reopen prediction solution using the factors

along four dimensions: (a) the work habits; (b) the bug report; (c) the bug fix; and (d)

the team. They performed the case study on three open-source projects and observed that

the factors for the reopen prediction solution varied with the project. Using these solutions,

ticket reopening could be prevented, and thus the efficiency of the ticket resolution process

could be improved.

We illustrated the application of process mining for reopening analysis in Case Study I

(Section 3.3).

3.2.3 Loop and Back-Forth Analysis

Loop is an edge that starts and ends at the same state (activity). Similarly, a transition

from state 𝐴 to another state 𝐵 and then back to state 𝐴 is defined as one back-forth loop.

Studying recurrent loops and back-forth is important as they represent repetition of the

same activity, indicating potential inefficiency [110]. Detecting patterns where a ticket is

passed repeatedly without any progress is difficult [112]. We detected loops and the back-

forth phenomenon between a pair of activities (also referred to as a ping-pong pattern in the

literature) in the discovered process model.

We illustrated the detection of self-loops and back-forth patterns from the discovered

process in Case Study I (Section 3.3).

3.2.4 Anti-patterns

Anti-patterns represent erroneous interdependencies between activities of process models.

Eid-Sabbagh et al. defined basic, composite, and nesting anti-patterns [113]. Analyzing
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anti-patterns is important for a process analyst to detect and eliminate erroneous transitions,

thereby improving the overall process quality. In the context of ticket resolution process,

we studied composite anti-patterns involving triggering and information flow between two

or more process states.

We identified composite anti-patterns (undesired transitions) and the cause of their ex-

istence for our process model in Case Study II (Section 3.4).

Algorithm 1: evaluateFitnessMetric
Require: Event log, Adjacency matrix 𝐴
Ensure: Fitness measure

1: while not at the end of Event log do
2: ∀ entries with Case ID i
3: if 𝑡𝑠𝐶 > 𝑡𝑠𝐵 > 𝑡𝑠𝐴 > 𝑡𝑠𝑅𝑒𝑝𝑜𝑟𝑡𝑒𝑑 then
4: Trace, 𝑇𝑖 = {Reported,A,B,C} where A, B, C and Reported are the activities

ordered by time stamp (ts).
5: end if
6: end while
7: Count frequency of each unique trace 𝑈𝑇𝑖 as 𝐹𝑖

8: while ∀i𝑖𝑛𝑈𝑇𝑖 do
9: 𝑚 := number of activities in unique trace i

10: 𝑝 := 𝑈𝑇𝑖[1], 𝑞 := 𝑈𝑇𝑖[2], 𝑉𝑖 = 1
11: while 𝑝 < 𝑚 do
12: if 𝐴[𝑝][𝑞] == 1 then
13: p++
14: q++
15: else
16: 𝑉𝑖 = 0
17: break;
18: end if
19: end while
20: end while
21: Calculate Fitness metric:

𝐹𝑀 =
∑︀𝑁

𝑖=1(𝐹𝑖 * 𝑉𝑖)∑︀𝑁
𝑖=1(𝐹𝑖)

where 𝑁=Number of unique traces.
22: if FM<1 then
23: inconsistentDetector(Eventlog, Adjacency matrix A)
24: else
25: No inconsistency
26: end if
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Algorithm 2: inconsistentDetector
Require: Event log, Adjacency matrix 𝐴
Ensure: Inconsistent Transition metrics

1: Array of states, 𝑠𝑡𝑎𝑡𝑒 = {𝑠𝑡𝑎𝑡𝑒[1], 𝑠𝑡𝑎𝑡𝑒[2]...𝑠𝑡𝑎𝑡𝑒[𝑓 ]}
2: for 𝑖 = 𝑠𝑡𝑎𝑡𝑒[1] : 𝑠𝑡𝑎𝑡𝑒[𝑓 ] do
3: for 𝑗 = 𝑠𝑡𝑎𝑡𝑒[2] : 𝑠𝑡𝑎𝑡𝑒[𝑓 ] do
4: count=0;
5: while not end of Event log do
6: if i → j in Event log then
7: count++;
8: end if
9: Transition Frequency, 𝑇𝐹 [𝑖, 𝑗]=count;

10: end while
11: end for
12: end for
13: Inconsistent Transition Frequency matrix, ITF:

= (𝑇𝐹 − 𝑇𝐹 ∘ 𝐴)

14: Total Inconsistent Transition:

=
∑︁

(𝑇𝐹 − 𝑇𝐹 ∘ 𝐴)

15: Highest frequency of inconsistent transition:

= 𝑚𝑎𝑥(𝑇𝐹 − 𝑇𝐹 ∘ 𝐴)

16: Most frequent inconsistent transition:

= 𝑎𝑟𝑔𝑚𝑎𝑥(𝑇𝐹 − 𝑇𝐹 ∘ 𝐴)
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3.2.5 Conformance Analysis

Sunindyo et al. used the hypothesis testing approach to verify the design model with a

runtime event log from the bug history data [92]. As the verification was done for a few

dimensions by proving/disproving the hypothesis, it did not capture the end-to-end process

conformance [92]. We defined metrics to measure fitness (i.e., how a well-observed process

complies with the control flow defined in the design time process model) and the point of

inconsistency.

Algorithm 1 was used to evaluate the Fitness metric. The event log and adjacency

matrix (with the row as the source activity and the column as the destination activity)

having 1 in the cell if the transition is permitted, otherwise 0, were given as input. The

trace (an array with activities from the event log in sequential order of their occurrence) was

obtained for each case ID in steps 1 to 6 of Algorithm 1. We identified the unique traces

and count frequency for each of them to optimize processing for conformance of trace. This

optimization was very useful because most of the cases had the same trace, and hence we

need not process conformance for each case individually. Each trace was verified with the

adjacency matrix A for conformance in steps 8 to 18 of Algorithm 1. If it had all permitted

transitions, then the valid bit 𝑉𝑖 for the trace was assigned value 1, else 0. The Fitness metric

was evaluated in step 21. If the value was < 1, then traces existed with some deviation from

the defined model. Therefore, to detect the cause of inconsistency, inconsistentDetector()

(Algorithm 2) was called, which took event log and adjacency matrix A as input and gave

value for inconsistency metrics. State is an array of all possible activities. The frequency

for the transition between each activity pair was counted from the event log and stored

in the transition frequency (TF) matrix (refer to steps 2 to 12). The log was traversed

f(f-1) times, where f is the total number of states (e.g., activities) and is typically in the

order of tens and hence not computationally expensive. In equation 13, we obtained the

inconsistent transition frequency matrix (ITF) by subtracting the product of TF and A

from TF. The total inconsistent transitions were evaluated by adding the elements of ITF.

The most-frequent inconsistent transition with its frequency was identified in steps 15 and

16 of Algorithm 2.
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We evaluated metrics using Algorithm 1 and Algorithm 2 for projects in Case Study I

(Section 3.3).

3.2.6 Delay due to User Input Requests

In an industrial context, a ticket is required to be resolved within the defined service-level

resolution time (SLRT), measured using the service-level clock. The service-level clock is used

to measure the service-level resolution time for every ticket and can have two states: pause

(stops measuring the time) and resume (continues measuring the time). Failure to meet

this requirement leads to a penalty on the service provider. After a ticket is assigned to an

analyst (person responsible for servicing the tickets), they can ask for user inputs to resolve

the ticket. When user input is requested, the service-level clock stops to prevent spurious

penalty on the service provider. However, this waiting time adds to the user-experienced

resolution time (URT) and degrades the user experience.

Analysts might require user input for various reasons such as incomplete or unclear

information provided by the user, input information requirements not being defined clearly

and completely, resolution of some tickets requiring specific information that is not intuitive

to the user, and analysts not interpreting the user inputs correctly [114].

Further, given the paramount importance of honoring service-level agreement, asking

user inputs is used as a sneaky way to achieve the service-level target of resolution time

[114][115]. In general, analysts are guided to request user inputs only if they genuinely need

information for ticket resolution. However, previous studies have suggested that cases of non-

information-seeking user input requests also exist, which are handled merely for the sake of

pausing the service-level clock and thus degrading the user experience [115]. Therefore,

analyzing and reducing the user input requests in the tickets’ life cycle are important to

mitigate the delays incurred while waiting for user inputs.

We investigated delay due to user input requests in Case Study III (Section 3.5).
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3.2.7 Organizational Analysis

Social networks were built using the event log data based on relations such as handover and

subcontracting of work, joint activities, and joint cases [108].

Joint Cases: Interaction patterns between various organizational members were studied

by plotting degree distribution graph and evaluating metric 𝑀1 for the strength of the inter-

action. Individuals working together (on the same case) should have a stronger relationship

than the people rarely working together [108]. We proposed metric 𝑀1 for each vertex with

degree d as:

𝑀1 =
∑︀𝑁

𝑖=1(𝑤𝑖)
𝑑 *𝑁

where 𝑁 = number of vertices with degree d, and

𝑤𝑖 = sum of the weight of all the edges incident on vertex 𝑖, that is, weighted degree, having

degree 𝑑.

Metric 𝑀1 measures the average strength of interaction for vertices (actors) having degree

d with its neighbors. It helps to identify more social and active contributors.

Also, we calculated relative working together metric [108] for performer p1 with respect

to performer p2 using complete log 𝐿 as:

𝑝1 on𝐿 𝑝2 = Number of cases p1 and p2 worked together
Number of cases p1 participated (3.1)

A high value for the aforementioned equation indicates that performer p1 has often worked

with performer p2. Therefore, we can recommend a group of people to work on the same

case using relative working together metric as it gives information about the strength of

working jointly between different people.

Joint Activities: An adjacency matrix is created where a row represents a list of actors,

and a column indicates activities performed by the actors. The value in each cell corresponds

to the frequency of an activity performed by a particular actor. We represented the relation

between actors and the activities they perform using a social graph where actors and activities
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Attribute Value
First issue creation date Jan 1, 2012
Last issue creation date Dec 31, 2012
Date of extraction July 14, 2013
Total issues in 2012 for the complete Mozilla project 111,234
Issues not authorized for access 15,638
Issues without history 3,149
Total issues extracted for Firefox 12,234
Total issues extracted for Core 24,253
Total activities for Firefox 40,233
(including Reported)
Total activities for core 88,396
(including Reported)

Table 3.1: Experimental dataset details (open-source Mozilla project)

were represented by a node. If an actor performs an activity, then a weighted edge was drawn

between the actor and the activity. It helps to identify a group of generalists and specialists

for efficient task allocation.

Handover: Handover of work is based on the idea that two actors are related if a case is

passed from one to another [108]. We consider only direct succession as handover; that is, an

activity executed by actor 𝑝1 is consecutively followed by an activity executed by actor 𝑝2.

Also, multiple transfers between the same actors (same instance) are counted and added to

frequency. We identified and represented the handover dependency between different actors

using a graph.

Subcontracting: If actor 𝑝1 performs an activity followed by 𝑝2 then again 𝑝1, it is

considered as the subcontracting of work to 𝑝2 by 𝑝1 (directed edge from 𝑝1 to 𝑝2) [108].

We studied cases with only one activity in-between two activities performed by the same

performer, that is, direct succession for the subcontract. We considered multiple occurrences

of the same instance. Frequent subcontracting between different performers shows that they

are more related to each other as work is subcontracted between them.

We used Gephi9, an interactive visualization platform, to visualize the social network

graphs. We illustrated social network analysis for Case Study II (Section 3.4).

9https://gephi.org/
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PROCESS MAPSNAPSHOT OF MOZILLA BUG HISTORY (BUG ID 600028)

Event Log

Activity

Resource

Timestamp

Figure 3-2: Snapshot of the Mozilla bug report history (event log) and the corresponding
process map.

3.3 Case Study I: Analyzing the Bugzilla Issue Track-

ing System

We conducted experiments on ITS data from Firefox and Core, two open-source subprojects

of Mozilla, using Bugzilla ITS. Table 3.1 displays the experimental dataset details. We

chose Firefox and Core for our analysis as these projects were large, complex, and long

lived. Firefox is Mozilla’s flagship software product, which is one of the most-used web

browsers for Windows, MAC, and Linux. Core includes shared components used by Firefox

and other Mozilla software, including handling of web content, such as Gecko, HTML, CSS,

layout, DOM, scripts, images, and networking. The Bugzilla ITS ticket data for Firefox and

Core projects are publicly available, and hence our results can be replicated and used for

comparison by other researchers.

3.3.1 Data Extraction and Transformation

We extracted the bug report history (Fig. 3-2) using Bugzilla APIs (through XML-RPC or

JSON-RPC interface). When the bug report history is transformed, it serves as the process

event log generated by Bugzilla ITS.

We extracted Status, Resolution (only for closed), Assignee, QA Contact, and Compo-

nent from the bug history to generate the event log. For open bugs, status can be New,

Unconfirmed, Assigned, and Reopened, which are captured as activities in the event log. For
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closed bugs, if the ticket is verified, then the status is Verified, and the resolutions that can

be Fixed, Invalid, Wontfix, Duplicate, Worksforme, and Incomplete are captured as activ-

ities10. Assignee, QA Contact, and Component assignments are recorded as Dev-reassign,

QA-reassign, and Comp-reassign activities, respectively. The selection of these fields is driven

by the analysis to be performed. We believe that in our case the aforementioned activities

were sufficient for good characterization of bug’s control flow, and performed the required

analysis.

We obtained timestamp corresponding to an activity from the when field of bug history,

as shown in Figure 3-2, to order the activities in the sequence of their actual execution (while

generating process map via Disco). The performer of the activity was treated as a resource

and captured from the who field of the bug history. We addressed issues such as missing

data and same time conflicts as discussed in Subsection 3.1.1.

3.3.2 Process Discovery

We imported preprocessed data into Disco to discover the process model for Core and Fire-

fox. Bug ID (ticket ID) was selected as the case ID to associate all activities pertaining to

the same ticket, and hence we could visualize the life cycle of a ticket. We had 15 nodes,

each corresponding to an activity in the process map for both the projects. A transition is a

directed arrow between two nodes. The process map obtained was fairly complex with 160

and 156 unique transitions (including infrequent transitions) for Core and Firefox, respec-

tively. For clarity, the process map with main transitions is shown in Figure 3-3 for Firefox.

The main transitions were determined on the basis of significance and correlation [83], that

is, the transitions with high significance and high correlation. The label of the edges and

nodes indicated the absolute frequency of transition. The shade and thickness corresponded

to the frequency, with more frequent being dark and less frequent being light.

Table 3.2 shows that a good percentage of cases had Dev-reassign (developer reassign-

ment) and Comp-reassign (component reassignment) events in the life cycle. Also, the

QA-reassign occurred quite often. Specifically, the Dev-reassign was much higher for Core

than for Firefox. Therefore, efforts were needed to minimize reassignments [116]. A bug
10https://bugzilla.mozilla.org/page.cgi?id=fields.html#status
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Figure 3-3: Process model with main transitions for Firefox. Edges and nodes are labeled
with absolute frequency; the thickness of edge and shade of node correspond to absolute
frequency.

once resolved should be verified; however, only around 4% of bugs were verified by the QA

manager for both the projects, which was significantly less than the resolved bugs. This

necessitated the need to uncover the reasons for infrequent verification and address them.

For activities belonging to the closed resolution, we observed that Core had almost double

chance of getting a bug Fixed, which was the recommended situation. However, for Firefox, a

comparatively large number of bugs were marked Duplicate, Invalid, and Worksforme, which

meant a lot of practitioners’ time was wasted in addressing the issues that were less useful

for the overall product quality improvement. Therefore, some actions were needed to reduce

the presence of such bugs; for instance, a better search mechanism before reporting a bug

or a “Duplicate bug” warning by automated search at the time of bug submission to avoid
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Activity Firefox Core
Reported 12234 (30.40) 24253 (27.43)
New 4596 (11.42) 15267 (17.27)
Fixed 2788 (6.92) 12573 (14.22)
Dev-reassign 2677 (6.65) 11471 (12.97)
Comp-reassign 2880 (7.15) 5843 (6.61)
Assigned 1802 (4.47) 5121 (5.79)
QA-reassign 1300 (3.23) 3095 (3.50)
Unconfirmed 4894 (12.16) 2893 (3.27)
Duplicate 2354 (5.85) 2319 (2.62)
Works for me 1180 (2.93) 1599 (1.80)
Verified 512 (1.27) 1081 (1.22)
Invalid 1692 (4.20) 1075 (1.21)
Reopened 330 (0.82) 1045 (1.18)
Wontfix 494 (1.22) 587 (0.66)
Incomplete 500 (1.24) 174 (0.19)
Total 40,233 88,396

Table 3.2: Absolute frequency of activities

duplicates [24][25], a more clear definition on what should be reported as bug to reduce

invalid bugs, and the need for a more clear description of bug for better understanding.

Unique Traces: The complete sequence of activities for a case life cycle, that is, from

the first activity (embarking the start of the life cycle) till the end is referred to as trace

for a case (here, ticket). Different tickets can have different sets of transitions, and hence,

different traces. For instance, a trace with a sequence A → B → C is different from that

of A → B → B → C because the second case has a loop that was not present in the first

case. Only closed tickets were used for the experiment. Effectively, 1164 and 622 unique

traces existed for Core and Firefox, respectively. However, the frequency distribution of the

traces, that is, the number of cases with a particular trace, was skewed. As a result, 80% of

the cases for Core and Firefox had traces from one of the most frequent 2% traces (traces

with at least 50 cases) and 3% traces (traces with at least 29 cases), respectively. Therefore,

while the majority of the tickets had the same resolution life cycle, there were tickets with

infrequent traces. Frequent traces are good automation opportunities, and the infrequent

ones are interesting for outlier behavior investigation.
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Firefox Core
Dev Comp QA Dev Comp QA

Avg 50.25 12.67 13.72 32.35 12.17 13.88
Med 9.76 0.22 0.35 5.36 0.17 0.78
Min 8 s 9 s 4 s 7 s 12 s 4 s
1Q 12.96h 18.72m 0.99m 12.24h 21.6m 10.37m
3Q 65.97 2.60 19.40 28.70 2.37 6.97

Max 437.85 334.88 133.05 546.70 450.51 161.14
SD 84.84 41.49 28.30 67.25 43.40 34.53

Table 3.3: Loop duration analysis (default unit is days)

3.3.3 Analyzing the Discovered Process Model

Loop and Back-Forth Analysis: The process model obtained for Core and Firefox had

a higher frequency of loop for Comp-reassign (component reassignment), Dev-reassign (de-

veloper reassignment), and QA-reassign (QA manager reassignment) as observed in Table

3.4. The first entry in Table 3.4 corresponds to Core and the second to Firefox. The higher

number of loops for Dev-reassign (1296/222) and Comp-reassign (471/257) can be attributed

to the following reasons: it was not easy to decide on the component to which the ticket

pertains and the person to whom the ticket should be assigned. The number of loops was

more than one in some cases; therefore, a lot of time was wasted in making a decision for the

right assignment and component identification. This was an undesired delay, which was as

high as 50.25 days and 30.35 days (as shown in Table 3.3) for Firefox and Core, respectively,

in the case of Dev-reassign.

Each cell of Table 3.4 matrix (except for the diagonal values) shows the frequency of back-

forth between activity pairs (14 X 14 matrix in which the row activity is state 𝐴 and the

column activity is state 𝐵 of the back-forth). We noticed that Unconfirmed, Comp-reassign

(component reassignment), Dev-reassign (developer reassignment), QA-reassign (QA man-

ager reassignment), and Reopen were activities frequently involved in the back-forth pattern.

Our experimental results revealed that a Fixed ticket being reopened and then again resolved

as Fixed was very frequent (refer to Table 3.4: 466 and 114 times for Core and Firefox, re-

spectively), indicating regression bug or disagreement of reporter with the fix. A back-forth

loop phenomenon involving states such as Invalid, Worksforme, Duplicate, and Wontfix with

Reopened shows disagreement (can be an error in judgment or a classification task that is
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3
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5
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1
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5

2
1

Comp-reassign 2
75
17

471
257

66
4

245
90 1

6
7

3
3

1 2
1

7
4

6
2

Dev-reassign 3
1

66
21

92
17

1296
222

21
3

172
99

2 2
2

9
1

QA-reassign 1 192
65

13
1

88
29

8
2

1 5 3

Assigned 16
7

Invalid 13
22

10
3 1 1

Reopen 5
2

2
2

5
7

4
1

52
16

WorksForMe 2
9

17
8

3
1

2

Incomplete 4
4 1 1

1

Won’t Fix 4
15

9
12 1

Duplicate 8
25

1
1

13
4 1 1

1
1

Fixed 7
3

466
114

6

Verified 9
3

Table 3.4: Loop and Back-forth confusion matrix where numerator corresponds to Core and
denominator corresponds to Firefox

nontrivial) between developers. One explanation was that the team members might not

be convinced with the initial decision and hence reopened but later closed the ticket (after

resolving the issue), resulting in loss of productivity and increase in the mean time to re-

pair. Back-forth between Unconfirmed and any resolution was permitted according to the

predefined Bugzilla life cycle, and we also observed it in the as-is process.

Reopen Analysis: Figure 3-4a shows the percentage of bugs getting reopened given res-

olution with a specific status. The absolute frequency for each status is presented in Table

3.2. The interpretations derived from Figure 3-4 are as follows:
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Figure 3-4: Reopen analysis.

∙ A comparatively high percentage of bugs closed with Wontfix, Invalid, Incomplete, and

Worksforme labels got reopened for Core. To improve the quality and understanding,

more effort should be made to ensure that sufficient information was retrieved from

the reporter before closing. We suggest two ways: (1) being interactive and clarifying

things with the reporter after a bug has been reported, and (2) improving initial

ticket reporting template to capture sufficient details beforehand, thereby reducing the

delay. The disagreement in the priority of bugs should be minimized by defining clearer

guidelines to decide the priority.

∙ The chances of getting a Duplicate bug reopened in Core (around 5%) were more than

double of that in Firefox (around 2%). A thorough understanding of the bug should be

gained before marking a bug Duplicate. The decision should not be based on superficial

attributes [35].

∙ After Wontfix, bugs resolved as Fixed were prone to being reopened in Firefox (6%). A

proper understanding of the root cause was necessary for fixing a bug [35]. Assumptions

should be avoided or minimized. If unclear, the owner should ask the reporter. Also,

we recommend verification of resolved tickets to reduce reopening; however, it was not

done for the majority of the tickets.

∙ The verified bugs were rarely reopened (1% or less). However, a small percentage

of tickets were verified; therefore, we suggest that the tickets likely to get reopened

[35][36] should be recommended to the QA manager for verification.
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Of all the reopened bugs, the major contribution was from the tickets resolved with

the status Fixed, Duplicate, Wontfix, Worksforme, and Invalid. Others constituted a lower

percentage, as evident from Figure 3-4c for Firefox and Figure 3-4b for Core. As the number

of Fixed bugs was high (refer Table 3.2), even if a lower percentage of Fixed got reopened,

it had a higher contribution toward bugs being reopened. Hence, the reasons for reopening

Fixed bugs should be dealt with high priority.

Bottleneck Analysis: We computed the median time for transitions observed in the derived

process model and made the following observations:

1. The median time taken for the transition New→Assigned was 21.2 h and 3.8 days for

Core and Firefox, respectively. This indicated that the assignment of bug took more

time for the Firefox project compared with Core. Therefore, we suggest to leverage

automatic triaging solution approaches [26][28] to make the assignment more efficient

for Firefox.

2. Experimental results revealed that the resolution of cases where the status was Works-

forme, Wontfix, and Incomplete was more time-consuming. For instance, a resolution

from New to Worksforme and Wontfix was taking an exceptionally long median du-

ration of 17.5 weeks and 24 days for Firefox and 20.6 weeks and 21.8 days for Core,

respectively. Therefore, if the bugs likely to be resolved with one of such status can be

detected automatically, then the practitioners’ time can be utilized for resolving other

bugs, which are likely to be fixed.

Conformance Analysis: We considered only closed cases for the conformance analysis.

As we captured more activities than defined in the Bugzilla life cycle11, we created a defined

process model on the basis of documented guidelines. We created the adjacency matrix cor-

responding to the defined process model. The value of Fitness metric, FM, using Algorithm

1 was 0.86 and 0.91 for Core and Firefox, respectively. It clearly showed that Firefox had

high conformance compared with Core. However, both the projects had fairly high confor-

mance with the defined process model; 818 traces out of 1164 total unique traces were valid

for Core. Similarly, 403 traces out of 622 were valid for Firefox, revealing that usually the
11https://www.bugzilla.org/docs/2.18/html/lifecycle.html
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Table 3.5: Experimental dataset details (Chromium project)

Attribute Value
First issue tracking system (ITS) issue creation date Jul 1, 2011
Last ITS issue creation date Jun 30, 2012
Total extracted closed ITS issues 35,035
ITS issues with patches in peer code review (PCR) 10,110
ITS issues with PCR issue reports authorized for access 10,000
Total PCR issues for above ITS issues 19,952
Unique PCR issues for above ITS issues 17,979
Total version control system (VCS) commit (out of all PCR issues) 19,422

invalid traces had low frequency. As FM < 1 for both the projects, we analyzed the cause

for nonconformance, that is, undefined transitions occurring in the runtime process. There-

fore, Algorithm 2 was invoked, which gave the results as 2412 and 739 total inconsistent

transitions for Core and Firefox, respectively. The most-frequent inconsistent transition was

Reported → Assigned for both the projects with a frequency of 1643 and 305, respectively.

Ideally, the Reported issue should first be confirmed; however, it was directly assigned in

many cases.

3.4 Case Study II: Analyzing Google Chromium Ticket

Resolution

We conducted experiments on datasets downloaded from ITS (Google ITS), PCR system

(Rietveld), and VCS (Subversion) of Google Chromium browser project, which is a large,

long-lived, and complex open-source software project. Issue reports12, patches13, and commit

details14 for Google Chromium browser are publicly available; hence, the experimental anal-

ysis could be replicated by other researchers and used for benchmarking and comparison. As

the data were extracted from multiple information systems that were not explicitly linked,

integration of extracted data was performed using textual analysis and regular expression

matching.

12https://bugs.chromium.org/p/chromium/issues/list
13https://codereview.chromium.org/
14https://src.chromium.org/viewvc/chrome
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Figure 3-5: Illustration to map multiple software repositories, and the corresponding process
map.

3.4.1 Data Extraction, Integration, and Transformation

We extracted 1-year data of Google ITS starting from July 1, 2011, to June 30, 2012, using

Google issue tracker APIs (Table 3.5). Data for 35, 035 issue reports (tickets) were extracted,

and all the extracted issues were found to be closed. Some issues reported in Google ITS

required source code change (patch) for resolution, which were peer reviewed to avoid defects

before they were committed into the source code. Our focus was to study the process followed

from the inception (issue reported in ITS) till resolution for the issues requiring code changes.

We identified such issues by performing a textual analysis of comments. We started with ITS

issue report and mapped to PCR by detecting the presence of code review system URL15 16

in comments marked as step 1 in Figure 3-5a. We obtained PCR issue ID from the links

posted in comments. It facilitated mapping to PCR issue depicted as label 2 in Figure 3-5a,

followed by extraction of PCR patch report details. Around 29% (10, 110) of the total ITS

issues had at least one link to the PCR system in comments. We extracted the PCR issue

ID from all the comments of these ITS issues and the PCR report details for the same. We

found that the PCR issue details were accessible for 10, 000 ITS issues as mentioned in Table

3.5. We considered the issues with at least one PCR report for further analysis. As shown in

15codereview.chromium.org
16chromiumcodereview.appspot.com
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Figure 3-6: Distribution of number of code review (CR) issues for ITS issues.

Figure 3-6, most of ITS issues (around 58%) had only one PCR issue associated with them,

and few had more than six also. Overall, we extracted 17, 979 unique PCR patch report

details and observed that some patches addressed more than one issue. Therefore, the total

mapping count from ITS to PCR was 19, 952, which clearly showed that the relationship

between ITS and PCR was Many-to-Many.

The patch report contains a brief description and an initial patch submitted by the author

while raising an issue in the code review system. The issue is assigned to the reviewer(s),

and subsequent patches are submitted for the same issue to address the comments of re-

viewers. The code change is committed to source code after the approval of reviewers, and

corresponding unique revision ID is generated in the VCS (subversion). However, if a patch

is not approved by the reviewers, then the PCR issue is closed without commit. Therefore,

the mapping between PCR and VCS is One-to-Zero if closed without commit, and One-

to-One if patch set committed successfully as unique VCS commit. As depicted in step 3

of Figure 3-5a, the PCR issue description had “Committed”: as part of its text where the

link to VCS was posted after commit. We extracted revision ID details from the PCR issue

report description and used it for mapping to VCS (labeled 4 in Figure 3-5a). We found

that 19, 422 out of 19, 952 PCR issue reports had links to VCS posted in the description.

Commit data for all the derived revision IDs were extracted from the VCS.

After extraction and integration of data from all the three repositories, we transformed it

to make it suitable for multiperspective process mining. Table 3.6 presents a list of identified

important activities, role of people performing the activity, and significance of activity for

each information system. There were eight distinct activities for ITS, three for PCR, and
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Table 3.6: List of activities, its significance, and the role of the performer for all information
systems

Information Sys-
tem

Activity Description Role

Issue Tracking Sys-
tem

I_Creation Issue reported in ITS Bug Reporter

I_Open Open bug status label Bug Owner, Triager, QA Man-
ager

I_Fixed Resolved as Fixed Bug Owner
I_Invalid Illegible, spam, and so

on
Bug Owner, Triager, QA Man-
ager

I_Duplicate Similar to other issue Bug Owner, Triager, QA Man-
ager

I_WontFix Can’t repro, Working as
intended, Obsolete

Bug Owner, Triager, QA Man-
ager

I_Verified Resolution verified QA Manager
I_Closed ITS progress ends Bug Owner

Code Review System C_Creation Initial patch reported in
PCR

Patch Author

(suffix: seq. no.) P_Creation Subsequent patch sub-
mit with corrections

Patch Author

C_Reviewed Code review process
ends

Patch Reviewer

Version Control Sys-
tem

V_Commit Code change committed Patch Committer

one for VCS. The code review system activities were distinguished by a sequence number

showing the order of PCR issue occurrence in ITS. For example, if the third PCR issue is

raised to resolve the same ITS issue, sequence number 3 is added as a suffix; thus, activity

is C_Creation3. Similarly, activities (such as P_Creation and V_Commit) pertaining to

the given PCR issue are suffixed with the same sequence number. We considered only these

activities because they were sufficient for our analysis.

Fields of event log were derived from the extracted data where caseID was basically the

ITS issue ID, activity was one of those listed in Table 3.6, and timestamp was the time when

an activity was performed. As the activities involved in the life cycle of an issue spanned

across three systems, we interlaced transformed event log from the three systems such that

the activities pertaining to the same ITS issue were identified by the same caseID (here, ITS

issue ID). We replaced the statuses Started, Untriaged, Available, Assigned, Unconfirmed,

and Accepted (part of ITS labels for the open status of a bug17) with a common activity

17http://www.chromium.org/for-testers/bug-reporting-guidelines
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Open, as this minimization would simplify the control flow analysis without missing any

useful information for the given study.

An instance is presented in Figure 3-5b where the activities of derived event log were

ordered according to increasing timestamp. It depicted control flow for an instance used to

explain the integration of three repositories. Here, an issue was reported followed by patch

creation, commit, and completion of review, and finally closed after getting fixed. The event

log obtained after transformation for 1-year issues could be used to obtain a general runtime

process model and for process mining from multiple perspectives. The final transformed

event log used for the experiments was made public18.

3.4.2 Process Discovery

We imported an event log for 9744 cases (with < 7 code review issues) to Disco for process

model discovery. The generated process model had 32 nodes, as shown in Figure 3-7, each

corresponding to an activity. Out of the 32 nodes, 8 activities were from ITS and the

remaining 24 (6𝑋4) were generated from 4 unique PCR and VCS activities (with 6 distinct

sequence numbers). The process model presented in Figure 3-7 shows the main transitions

(most significant and correlated) for simplicity and clarity. The label on the edges represents

the absolute frequency of transition, and the value in an activity node is the total number of

times that the activity was performed in the complete event log. The shade of a node and

thickness of an edge in the process model corresponded to the absolute frequency of activity

and transition, respectively. We made the following observations from the discovered process

map:

1. The number of cases reduced with an increase in PCR sequence number, as shown in

Table 3.7. The majority of the issues were resolved with one patch issue reported to

PCR. Out of 9, 744 cases, 678 cases (ITS issues) had more than 3 code review issues

associated with them. Only 123 cases had 6 code review issues. Around 97% of total

PCR issues (16, 302) were committed to VCS. Around 42% of the submitted patches,

that is, PCR issues with a direct transition from C_Creation to V_Commit did not
18https://github.com/Mining-multiple-repos-data/experimental_dataset
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Figure 3-7: Process map for the Chromium bug resolution process spanning three information
systems.
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Table 3.7: Distribution for the number of ITS issues with given code review issue sequence
number and total committed cases

CR sequence no. Total cases (% of total issues) Committed cases (% of total cases)
1 9,744 (100) 9,428 (96.7)
2 3,945 (40.5) 3,851 (97.6)
3 1,528 (15.7) 1,494 (97.7)
4 678 (6.9) 663 (97.7)
5 284 (2.9) 277 (97.5)
6 123 (1.3) 123 (100)
Total 16,302 15,836 (97)

need corrections and were approved for commit without any changes.

2. As observed from Figure 3-7, code review issues were created sequentially one after the

other. The patch author reported a patch, which was committed to VCS. Sometimes

if an issue was not resolved with the committed patch, another patch was reported for

the same issue. As the need for more patches could be realized only after review and

commit of current patch, patches for the same ITS issue were reported sequentially.

3. A high percentage (89%) of the cases were resolved as Fixed, which was desired, and

contributed toward the overall software quality improvement. This indicated that if

the source code was changed to resolve an issue, it was highly likely to get fixed, as

code change is an indicator of more careful involvement.

4. Some issues were initially marked with wrong statuses as Duplicate or WontFix or

Invalid, which were Fixed later. It could happen if additional information was available

to fully understand an issue or the initial status was assigned incorrectly. It emphasized

the need to fully understand an issue to reduce wrong label assignment and extra delay

in reopening wrongly closed issues.

5. Final bug resolution was verified for only 35.5% of the cases, highlighting the need to

identify reasons for infrequent verification and address them.

Unique Traces: We had 4453 unique traces for the dataset, which was fairly large.

However, the distribution was skewed with some traces being more frequent, as 50%

of the cases were covered with only top 6% of unique traces. The most frequent

trace covering 4.39% of the cases was I_Creation → C_Creation1 → V_Commit1 →
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C_Reviewed1 → I_Fixed → I_Closed, which was the minimum sequence of activities

to successfully fix an issue.

3.4.3 Analyzing the Discovered Process Model

Anti-patterns: Anti-patterns represent erroneous transitions in the process models. It is

important to analyze anti-patterns for a process analyst to detect and eliminate erroneous

transitions, thus improving the overall process quality. We identified anti-patterns (undesired

transitions) and the cause of their existence for our process model.

It was evident from the discovered process model (Figure 3-7) that I_Creation was the

first activity for the majority of the cases (8349 out of 9744), indicating that an issue was

reported in ITS followed by patch submission to PCR to resolve an issue. However, 1356

cases had C_Creation1 as the first activity, indicating that a patch was first submitted

to PCR followed by an issue creation in ITS. We observed that for the cases where ITS

issue was reported after PCR issue, around 55% of the cases had more than one PCR issue

associated with them. On the contrary, for cases where ITS issue was reported first, around

40% of them had more than one PCR issue. We believe that ITS issue was reported after

PCR issue for such cases after the patch author realized that only one code review issue

might not be sufficient for the fix, hence making issue reporting crucial for traceability. It is

recommended19 to first report an issue in ITS before submitting a patch to PCR to maintain

a complete record of code changes. However, we identified 1356 cases where this practice

was not followed. The remaining 39 cases had an unexpected behavior in which the patch

was directly committed to VCS without review followed by issue creation in PCR and ITS.

One reason could be some critical project fixed by code committers. However, this situation

of emergency happened very rarely. Therefore, efforts should be made to ensure that an

issue was first reported in the ITS, followed by further progress spanning across PCR and

VCS to resolve an issue.

19http://www.chromium.org/developers/contributing-code
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Figure 3-8: Degree distribution graph with metric M1 curve (Section 5.3.3) overlaid for
analysis.

3.4.4 Organizational Analysis

Open-source projects such as Google Chromium are driven by volunteer contributions and

are important to investigate the interaction pattern between various contributors to improve

the efficiency of the project.

Joint Cases: We considered only the actors with participation in more than three cases.

The degree distribution curve is plotted in Figure 3-8, where the horizontal axis represents

degree and the vertical axis represents the total number of actors having that degree. We

observed from the degree distribution curve in Figure 3-8 that most of the actors had degree

up to 50, with some having more than 100 also. The number of actors decreased with an

increase in degree, which was also verified statistically. The Pearson correlation coefficient

was 0.5575, with negative sign indicating the relation between the reduction in the number

of actors with an increase in degree. It meant that most of the actors worked with com-

paratively few people and few had a large social circle. We evaluated and plotted metric

𝑀1 for each degree d, which is represented with a green line in Figure 3-8. The correla-

tion coefficient between degree and weighted average degree (𝑀1) was 0.6661 (fairly high),

showing a positive correlation between them. It supported the observation that the strength

of interaction was also high for individuals with a large social circle. Effectively they were

active contributors working on multiple cases together with multiple people (both weighted

degree and degree are high).

We calculated relative working together metric and presented a list of the top five most
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Table 3.8: List of top 5 instances working together with relative working together metric
values.

p1 p2 Cases together 𝑝1 on𝐿 𝑝2 𝑝2 on𝐿 𝑝1
A B 358 0.094 0.053
C B 337 0.093 0.050
D B 314 0.080 0.047
C A 256 0.070 0.067
D C 249 0.063 0.068

frequently working together actor pairs (instances) in Table 3.8. The names of the performers

were aliased for anonymity. Interestingly, we noticed that active members interacted more

with active members. We observed that A was twice closely related to B than B to A

because A relatively worked more often with B on all his cases. Similarly, for C-B and

D-B, the relative working together metric showed high tendency of C and D to work with

B. However, for C-A and D-C, both the actors equally tended to work with each other.

Therefore, we can recommend a group of people to work on the same case based on the

strength of relation between them.

Joint Activities: Figure 3-9a depicts the relation between performers and the activi-

ties they performed, where the size of each vertex is proportional to the degree and the

color ranges from blue (minimum), green (medium) to red (maximum) corresponding to the

weighted degree. If an actor performed an activity, then an edge is drawn between the actor

and the activity. There are 2160 unique performers involved in 9744 cases. We notice from

Figure 3-9a that 1236 unique reporters reported an issue in ITS. A major section of per-

formers (marked with label 1) reporting issues in ITS was isolated, that is, a large number

of actors only reported issues and did not participate in any other resolution activity. Here

we had diverse performers reporting issues to ITS for a few number of times. A total of 915

unique performers reviewed patches, and we noticed that a majority of reviewers did not

participate in any other activity. Oval 2 in Figure 3-9a highlights a big group of reviewers

who were specialists in reviewing the patches. We identified a group of actors reviewing

patches more frequently using the available social graph with high weighted edges and gave

them commit rights to improve the overall process performance and role assignment. There

were comparatively few contributors performing more than one role, that is, generalists. We
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Figure 3-9: Analysis from Organizational Perspective

observed that the code review activities had comparatively high weighted degree (nodes with

bright green and red shades). This implied that more number of distinct people were engaged

with ITS whereas less number of dedicated people were involved with patch submission and

review activity.

We observed that the group of actors who participated in all the three systems was very

small, labeled as 3 in Figure 3-9a. The majority of the actors contributed to only one system

by performing single or multiple activities confined to the same system (refer labels 4 and 5

in Figure 3-9a). Therefore, a small group of contributors (labeled as 3) was very crucial as

they had knowledge of multiple systems and were core generalist contributors.

Handover: We filtered instances with handover frequency less than 15 to remove infre-

quent instances (not important for our analysis of frequent handover identification). We

identified 988 unique handovers, including self-loops having frequency more than the thresh-

old (15). The sociogram obtained for handover had 472 vertices, as shown in Figure 3-9b.

Out of 988, most of the instances (429) are self-loops, which means that a good number of

performers performed subsequent activities more than 15 times. We noticed many isolated

vertices as the performers only had self-loops and no frequent handover with other perform-

ers. The size of the vertex corresponds to out-degree, and the color varies with in-degree
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where blue is for low, green is for medium, and red corresponds to a high range of in-degree.

We observe from Figure 3-9b that nodes with high in-degree (red color) had high out-degree

(relatively big), with few exceptions where the in-degree was comparatively greater than the

out-degree, that is, a small-sized node with green color. Therefore, no performer had the

highest authority (out-degree significantly greater than in-degree) to only hand over work

to others, which conformed to the expectation from an open-source project where the con-

tributors are volunteers and take up tasks of their choice. The highest weight edges were

self-loops, where weight is the frequency of handover, supporting continuous task execution

by the same performer. There were instances with handover between different individuals,

with frequency as high as 221 and 197. Also, we observed in some instances that the edge was

bidirectional, implying the handover of work both ways. However, many instances existed

where the work was transferred only in one direction. Hence, we could say that only the

destination vertex (second actor) followed the activity performed by the source vertex (first

actor). Therefore, we identified handover dependency between different performers without

causality validation.

Subcontracting: We identified 6771 subcontract instances with most of the instances

having a low frequency. We filtered instances with subcontracting frequency less than 11 to

focus on frequent and interesting instances. Overall, we had 577 instances (edges including

self-loops) above threshold involving 370 unique performers (vertices) as shown in Figure

3-9c. The size of the vertex was proportional to the out-degree, and the color of the node

ranged from blue (lower) to red (highest) for the in-degree. There were more nodes with

a relatively large size in blue or green color as shown in Figure 3-9c, indicating that these

were the performers with case subcontracted to them by few other performers; however,

they subcontracted work to more performers. Very few nodes were with red color (high

in-degree) and small size (less out-degree), implying that more individuals subcontracted

work to them. As observed in Figure 3-9c, many nodes (on the periphery) were with only

self-loops, signifying that the same performer performed subsequent activities multiple times

(at least more than 2) with no subcontract to any other performer. In fact, the frequency

of self-loops (weight of self-loop edges) was comparatively high, which meant that the same
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performer often continued working multiple times. At the center of the sociogram in Figure

3-9c is a chain of subcontracts between different performers, showing that they were more

related to each other as work was subcontracted between them.

For the Google Chromium browser project, we also compared the process for issue type,

Performance and Security [106]. A common issue resolution process is defined for the Google

Chromium project. In this study, we aimed to highlight the differences in process in practice

for different bug types. This study used the process cube structure [117], which was discussed

in our another study [106].

3.5 Case Study III: Analyzing Ticket Resolution Pro-

cess for a Large Global IT Company

We performed a case study on IT support ticket data for a large global IT company. Unlike

open-source, ticket resolution in industries has expected SLRT, which is agreed upon a priori

between the service provider and the client (user) as part of the service-level agreement

[114][118]. A ticket is assigned to an analyst responsible for servicing the ticket within the

associated SLRT. It is crucial to service within the agreed service level because nonfeasance

leads to a penalty on the service provider [119]. The analyst can ask for user inputs while

resolving the ticket. When this happens, the state of the ticket changes to Awaiting User

Inputs (AUI). To prevent spurious penalty on the service provider, the service-level clock

pauses while the ticket is in the AUI state. Nevertheless, the time spent while remaining in

the AUI state adds to the URT.

Figure 3-10 illustrates a real example of the ticket life cycle from the information system

of a large global IT company. As shown, a user reported a ticket with a short description:

“Please install the following software on my machine. This is a CORE software as per

EARC.” EARC is a software classification system internal to the organization. The user

also provided ticket-specific details, such as hardware asset id, platform, software name,

and software version. Based on a priori agreed-upon service levels, the resolution time of

9 h was associated with the ticket. Next, the ticket got assigned to an analyst, a person
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Figure 3-10: A real example of the ticket life cycle from a large global IT company, illustrating
the problem of delay (here delay of 87 h 34 min) in the overall URT due to multiple user
input requests by the analyst.

responsible for servicing the ticket. The analyst started working on the ticket and requested

the user to “provide risk and ops team approval,” changing the ticket status to AUI. The

user attached the approval after 21 h 34 min (as labeled on the edge in Fig. 3-10). This time

was not counted toward SLRT, but it was experienced by the user. Such real, information-

seeking user input requests could have been avoided if the user had been preempted at the

time of ticket submission and required to provide the risk and ops team approval upfront.

Sometimes after receiving the user’s input, the analyst again changes the status to AUI with

the comment “Will check and update soon” (highlighted with the dotted outline). Inspecting

this comment, we noticed that no information was sought from the user; subsequently,

the ticket status changed to Resolved without any input from the user. The time for this

transition, that is, 66 h, was also experienced by the user, but not included in the measured

resolution time. Such tactical, non-information-seeking user input requests needed to be

detected and handled separately. Summarizing, the resolution time measured by the service-

level clock, that is, 5 h 52 min (10 min + 3 h 32 min + 2 h 10 min), was significantly lower

than the URT of 93 h 26 min (10 min + 3 h 32 min + 21 h 34 min + 2 h 10 min + 66

h). Consequently, for the presented example, the measured resolution time was within the

agreed threshold of 9 h, that is, there was no service-level violation. However, the user did
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Table 3.9: Experimental dataset details for the case study in a large global IT company

Attribute Value
Duration One quarter of

2014
Total extracted Closed tickets 593,497
Closed tickets with category Software 154,092 (26%)
Total tickets with at least one AUI state 88,039 (57%)

not experience the agreed service quality because of the two user input requests.

We discovered a runtime (reality) process from ticket data using the proposed framework

to analyze the user input requests and their impact on the URT.

3.5.1 Data Extraction and Transformation

We downloaded data of closed tickets for one quarter and archived them in the organization’s

ticket system. We ignored open tickets because we wanted to analyze user input requests in

the ticket life cycle and the resolution time. Data included the required information about

a ticket starting from the time of ticket submission until it was closed. As summarized in

Table 3.9, there were 593, 497 closed tickets, out of which we conducted our study on tickets

from the software category because it was the most-frequent category constituting 26% of

the total tickets. We transformed data for all closed software tickets (154, 092 tickets) to

make them suitable for process mining. In this study, the event log consisted of events having

four attributes: ticket ID, activity, timestamp, and service-level clock state. The fields were

derived from the downloaded ticket data, where ticket ID uniquely identified the tickets. We

selected ticket ID as case ID to visualize the life cycle of a ticket, that is, transition between

different activities in the discovered process. Activity captures the progress of ticket life

cycle, for example, logging of ticket, assignment of ticket to analysts, making a user input

request, and marking a ticket as resolved. We included in the event log a subset of the

activities that, we believe, captured the progression of tickets, could affect the performance,

and was sufficient for the analysis. Also, we validated the list of activities with the manager.

The list of activities along with the significance of each activity is included in Appendix

B and also made publicly available [120]. All events had an associated timestamp, that is,
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Figure 3-11: User input request distribution: percentage of cases with the given number of
AUI state.

the time when the activity was executed. The timestamp was converted into the consistent

time zone and captured for each event. The service-level clock state (resume/pause) was

inferred for an event from the documentation, which clearly stated the activities for which

the service-level clock paused. For example, the service-level clock paused when asking for

user inputs, marking a ticket as resolved, and closing a ticket.

3.5.2 Process Discovery

We imported the transformed event log for 157, 092 tickets to Disco for generating the process

model and presented the derived process model for the complete process in Appendix B (also

made publicly available [120]). The AUI state was present in 57% of the tickets, and 27.5%

of them had multiple user input requests in their life cycle. With a total number of 125, 330

comments, we observed from the distribution curve depicted in Figure 3-11 that a majority

of the cases had one or two user input requests in the life cycle, and some cases had more

than four user input requests. In Figure 3-12, we present only the transitions involving

AUI activity for analyzing its transition patterns. To understand the transition distribution,

percentage of transitions from a source state 𝑆 to a destination state 𝐷 was measured as:

𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒, 𝑆𝐷 = 𝑆 → 𝐷 transition frequency× 100
Absolute frequency of S (3.2)

The AUI state acted as 𝐷 for incoming edges and 𝑆 for outgoing edges. Incoming edges
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Figure 3-12: AUI state transition pattern showing user response classes where 𝑆𝐷 and me-
dian transition time are edge labels. The state of the service-level clock is indicated using
play/pause icons. The activities were as follows: ACK, ticket assigned to an analyst; TR,
transfer of ticket to another analyst; non-RE, user marks a ticket as not resolved; Awaiting
User Inputs, analyst makes a user input request; User Input Received, user provides input
for the user input request; RE, analyst marks a ticket as resolved; Closed, user closes the
ticket; AUI-Autoclosure, ticket auto-closed as user did not provide inputs within the defined
limit of 14 days; Attachtdoc, user attaches a document.

gave us an intuition on the source state, that is, the activities often followed by user input

requests by analysts. Similarly, the outgoing edges allowed us to investigate user response

behavior to user input requests by analysts and, thus, the possibility of requests being real

and tactical. The transition percentage for both incoming and outgoing transitions is labeled

in Figure 3-12.

3.5.3 Analyzing the Discovered Process Model

Delay due to User Input Requests: From Figure 3-12, we observed that analysts seeked

inputs when assigned a new ticket (ACK ) or when a ticket was transferred (TR) to them

from other analysts for 26.00% and 34.35% of the instances, respectively. It indicated that

as they started working on the ticket, they identified a need for additional information and

hence started by asking for inputs. Interestingly, AUI was a successor state for User Input

Received (for 45.96% of the instances) signaling that input from user leads to another user

input request. The most common source states for AUI were ACK, TR, and User Input

Received, together constituting around 90% [(152, 820× 0.26 + 139, 709× 0.3435 + 56, 289×

0.4596)/125, 330] of the total incoming transitions (Figure 3-12). Non-RE (user marks a
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ticket as not resolved after analyst says it is resolved) was followed by user input requests in

35.58% of the instances but constituted merely 0.7% (2, 729× 0.3538/125, 330) of total user

input requests. We explored outgoing edges and classified destination states broadly into

the following two classes:

∙ User update: We observed that users provide inputs, User Input Received (comment

from the user) or AttachtDoc (document attached by the user), for around 42.00% of

the requests. We conjectured that user input requests with these destination states

were mostly information seeking (real) and thus updated by the user. For around

15.42% of the instances, the user did not provide information and explicitly closed a

ticket instead, that is, the destination state was Closed.

∙ No update: As shown in Figure 3-12, 23.93% of the total AUI stated transit to RE

(resolved) without any update from the user. We conjectured that such user input

requests were more likely to be the tactical ones as the analysts managed to resolve

the ticket without receiving user inputs. For 8.00% of the cases, a ticket was auto-

closed. That is, the destination state was AUI-Autoclosure because no user action was

performed in response to the user input request within the defined time limit of 14

days (as enforced in the given information system).

We measured the URT and compared it with the SLRT to capture the gap between them.

To evaluate URT for ticket 𝑖, we used the total time elapsed between ticket assignment and

final resolution of ticket, without excluding user input waiting time and nonbusiness hours,

as follows:

𝑈𝑅𝑇𝑖 = 𝑡𝑠𝑖(𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑)− 𝑡𝑠𝑖(𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑) (3.3)

where 𝑡𝑠 is timestamp at which ticket 𝑖 is marked Resolved and Assigned.

We analyzed only the cases that were resolved and never reopened. Overall, 105, 539

such cases existed for which we evaluated the URT. The Software category had tickets with

three service resolution time thresholds as per the organization’s service-level agreement: 9

h, 18 h, and 36 h. We grouped tickets into three categories on the basis of same SLRT. As

shown in Table 3.10, a high percentage of cases had URT more than the agreed-upon SLRT.
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Table 3.10: Gap between SLRT and URT (SLRT, Service-level resolution time; URT, user-
experienced resolution time.)

Class #Cases SLRT Median URT Cases with URT > SLRT
1 16,110 9 h 21 h 62.46% cases
2 83,939 18 h 26.34 h 72.49% cases
3 5,490 36 h 77.84 h 76.14% cases

However, the service-level violation was recorded for very few cases20 because the waiting

time was not counted toward the measured resolution time. The median resolution time

experienced by a user was 21 h, 26.34 h, and 77.84 h for cases with SLRT of 9 h, 18 h, and

36 h (Table 3.10), respectively. This highlighted that the URT was much higher than the

measured resolution time due to user input requests, indicating a bottleneck in the ticket

resolution life cycle.

To summarize, process mining analysis showed that 57% of the tickets had user input

requests in the life cycle. Users provided input to around 42% of the total user input requests,

which we considered as potentially real requests. For around 23% of the cases, the ticket was

resolved without any user inputs, thus corresponding to potentially tactical requests. User

input requests caused a significant gap between the measured resolution time and the URT.

The findings clearly highlighted the need to reduce real and tactical user input requests.

3.6 Threats to Validity

Case studies were performed on specific projects, although large and long lived. While

the proposed process mining analyses provided actionable insights on the given projects,

they might not generalize to projects with different characteristics. Since case studies were

performed on open-source projects, in some cases we did not have access to sufficient data

to support our inferences.

For Case Study I, we analyzed data extracted from the Bugzilla issue tracking system

of the popular open-source Firefox browser and Core project. While we identified the bot-

tlenecks, that is, more time-consuming transitions, we did not have information about the

nonworking hours and time-zone differences, which could influence the inferences. We iden-
20We cannot reveal exact numbers because of confidentiality.
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tified some deviations as part of the conformance analysis; however, we could not validate

whether those were permissible deviations or indeed the violation of the defined process.

For Case Study II, we used heuristics to integrate multiple information systems, that

is, Issue Tracking System (ITS), Peer Code Review (PCR) system, and Version Control

System (VCS), for Google Chromium ticket resolution. As the integration approach relied

on the presence of URLs with specific format in the ITS and specific text string in PCR,

the integration was prone to error, although we performed manual analysis to mitigate such

cases.

In Case Study III, we analyzed the transition pattern for awaiting user inputs in a large

global IT company and conjectured that there were both real and tactical user input requests.

Tactical user input requests were observed in Volvo IT organization ticket data [121] and the

data for the large global IT company investigated as part of this case study. However, tactical

user input requests can be very rare or not present in other IT support ticket data for other

organizations with different characteristics (such as small size, less workload, and lenient

service-level resolution time limit). Also, it is possible that the user responded to a non-

information-seeking user input request (maybe by expressed displeasure), but it was recorded

as ‘User Input Received’ and thus falsely inferred as real user input request. Similarly, it is

possible that the user did not respond to a real user input request and thus might appear

tactical from the transition pattern. However, we could detect such tactical and real user

input requests by analyzing the comments as discussed in the next chapter.

3.7 Summary

We explored applications of various process mining tools and techniques to analyze the event

log data generated by various information systems (such as issue tracking system (ITS), peer

code review system (PCR), version control system (VCS), and IT infrastructure support

ticketing system) used during software ticket resolution. We conducted a series of case studies

on data extracted from Bugzilla ITS of the popular open-source Firefox browser and Core

project; on data of open-source Google Chromium project for simultaneously mining ITS,

Reitveld PCR system, and subversion VCS; and on data of ticketing system for a large global
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IT company. Using the proposed framework, we discovered the process model and analyzed

it from multiple perspectives, such as bottleneck identification, reopen analysis, loops and

back-forth, anti-patterns, conformance analysis, and delay due to user input requests. This

helped us understand the actual process at a granular level and identify inefficiencies.

Some of the findings of the case studies were as follows:

3.7.1 For Case Study I: Bugzilla Issue Tracking for Firefox and

Core

The runtime process model was discovered by process mining event logs of 12, 234 Firefox

and 24, 253 Core issue reports. The analysis of the discovered process model revealed inef-

ficiencies, such as reopen, back-forth, bottlenecks, and deviations, in the designed process

model. The following observations were made:

∙ A significant number of bug reports (1296 for Core and 222 for Firefox) had developer

reassignment, causing significant delays (refer Table 3.3) in ticket resolution [26][27][28].

In fact, maximum loops were for developer reassignment, that is, repeated reassign-

ment. Therefore, the assignment of tickets needs improvement [26][28].

∙ Resolution of tickets as wontfix and worksforme was time-consuming. Also, several

bug reports with these resolutions were reopened, signaling the need for improvement

in identifying such tickets.

∙ Bugs were reopened from different resolution states for various reasons. We observed

that not all the reopened tickets were resolved as Fixed. Some of them were again

resolved with the initial status (back-forth), indicating disagreement. Verified bugs

were rarely reopened; however, a lower percentage of tickets were verified. Therefore,

it will be interesting to recommend ticket verification based on the chances of ticket

getting reopened. Also, the existing solutions for reopen prediction [56][36] can be

deployed if the reopening of bugs is identified as an inefficiency.

∙ Identification of duplicate tickets needs improvement because many duplicates were

reported that went undetected at the time of reporting. They can be eliminated by
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adopting some of the existing automated techniques [24][25].

∙ While the value of the fitness metric (0.86 and 0.91 for Core and Firefox, respectively)

was quite high for both projects, there is a need to understand the impact of the

identified deviations because not all the deviations degrade the performance.

3.7.2 For Case Study II: Google Chromium Ticket Resolution

Process map (reality) discovered from the runtime event log for 9744 Google Chromium ITS

issues, with resolution activities spanning across three information systems Chromium ITS,

Rietveld PCR, and Subversion VCS, revealed the control flow for the complete life cycle of

issues. A process map was derived with 32 states (activities) and core transitions from which

some of the interesting findings were:

∙ A fairly large number of cases, that is, 1395 (around 15%), had an issue in ITS in-

stantiated after patch submission in PCR or commit in VCS. Ideally, for traceability

reasons, a ticket’s life cycle should start from the issue reporting in ITS, followed by

patch submission in PCR and commit in VCS. The impact of this anti-pattern needs

further investigation. If it degrades the quality, then there is a need for a better process

control mechanism to mitigate such undesirable deviations.

∙ Using organizational analysis, we analyzed the interaction pattern between various

actors. It helped identify generalists and specialists and more active contributors.

3.7.3 For Case Study III: Ticket Resolution Process for a Large

Global IT Company

The process model was discovered for 593, 497 tickets of a large, global, IT company and

analyzed for the delay caused by user input requests.

∙ The process mining analysis showed that 57% of the tickets had user input requests

in the life cycle. Users provided input to around 42% of the total user input requests,

which we considered as potentially real requests. For around 23% of the cases, the
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ticket was resolved without any user inputs, and thus corresponded to potentially

tactical requests.

∙ User input requests caused a significant gap between the measured resolution time

and the user-experienced resolution time. The findings clearly highlighted the need to

reduce real and tactical user input requests.

Open source projects were analyzed in Case Study I and Case Study II whereas ticket

resolution process for a large global IT company was analyzed in Case Study III. Commer-

cial projects are driven by Service Level Agreement (SLA). So, we focused the analysis in

Case Study III on time perspective that is, resolution time which is an important metric in

SLA. Specifically, delay caused due to user input requests in the ticket resolution process

is analyzed. Open-source projects do not have the notion of SLA so we could not perform

similar analysis for the open source projects. In Case Study I and Case Study II, we focused

on bottlenecks, loops, back-forth, reopen, anti-patterns and conformance analysis. There-

fore, while the same proposed approach was used for process model discovery and analysis

for both open source and commercial projects, the perspective of analysis was different thus

could not be compared.

Case Study I was performed first in which data from single software repository that is,

Bugzilla issue tracking system was analysed. Hence, when selecting the second case study we

picked one in which we needed multiple repositories for the analysis. The third case study

was on commercial project where the analysis was driven largely by Service Level Agreement

(SLA) as improving SLAs was the most important business goal for the organization.

Some of the observations made in the presented case studies are known, explored prob-

lems in the literature, which can be mitigated by deploying the existing solutions. Some

inefficiencies identified have not been explored earlier for the ticket resolution process in

these projects. These can lead to improvements in the ticket resolution process. In the next

chapter, we describe one such improvement, namely, to reduce user input requests causing

a delay in the ticket resolution life cycle.
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Chapter 4

Reducing User Input Requests in

Ticket Resolution Process

User inputs are asked during the ticket resolution process due to various reasons such as

incomplete or unclear initial ticket [114][122][123][124]. Further, non-information-seeking

user input requests can also be performed merely for pausing the service-level clock, thus

achieving a service-level target of resolution time [115]. Interactions for user input requests

cause delays and degrade the ticket resolution process [115][122][123][124].

Also, from the case study III (refer to Chapter 3) on the tickets of a large global IT

company, we found that around 57% of the tickets had user input requests in the life cycle,

causing user-experienced resolution time to be almost twice as long as the measured service

resolution time. We observed that the user input requests were broadly of two types: real,

seeking information from the user to process the ticket; and tactical, when no information is

asked but the user input request is raised merely to pause the service-level clock. Therefore,

to reduce the overall user input requests, both real and tactical types should be minimized.

The work presented in this chapter was motivated by the need to minimize the overall user

input requests in tickets’ life cycle, and thus to reduce user-experienced resolution time and

enhance user experience.

To achieve this, we proposed a machine learning-based system that preempts a user at

the time of ticket submission to provide additional information that the analyst is likely to

ask, thus reducing real user input requests. We also proposed a rule-based detection system
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to identify tactical user input requests. We conducted a case study on the IT Infrastructure

Support (ITIS) data of a large global IT company (same as the data for case study III

in Chapter 3) demonstrating the usefulness of the proposed solution to reduce user input

requests. Together, the proposed preemptive and detection systems could efficiently bring

down the number of user input requests and improve the user-experienced resolution time.

4.1 Information Needs for Ticket Resolution

Various studies have been conducted to identify information needs and preempt users for

information given on the incomplete ticket. Bettenburg et al. [124] conducted a survey

on developers and users from Apache, Eclipse, and Mozilla to identify the information that

made good bug reports. Further, they designed a tool Cuezilla that provided feedback to the

user at the time of ticket reporting for enhancing bug quality. Yusop et al. [122] conducted

a survey focused on reporting usability defects, and the analysis of 147 responses revealed

a substantial gap between what developers provided and what software developers needed

when fixing usability defects. These studies captured the information deemed important in

the opinion of the users and developers. As opposed to this line of work we did not rely only

on the intuition and domain knowledge of users and developers but performed data-driven

analysis. Therefore, we focused on what information developers needed as opposed to what

information developers believed they needed.

Chaparro et al. [125] analyzed 2912 bug reports from 9 software systems and observed

that while most of the reports (i.e., 93.5%) described observed behavior, only 35.2% and

51.4% of them explicitly described Expected Behavior (EB) and Steps to Reproduce (S2R).

Therefore, they developed an automated approach, DeMIBuD, to detect the absence of EB

and S2R in bug descriptions. While they alerted reporters about missing EB and S2R for

efficient ticket resolution, we preempted for specific information needs to service the ticket.

Ko et al. [126] looked at thousands of bug report titles for several open-source projects and

identified fields that could be incorporated into new bug report forms. They analyzed only

the titles of the bug reports, not the comments to determine the information asked during bug

resolution. Breu et al. [123] identified eight categories of information needs by analyzing the
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interaction between developers and users on a sample of 600 bug reports from the Mozilla

and Eclipse projects. They found that a significant proportion of these interactions were

related to missing or inaccurate information. They observed some rhetorical questions (no

information asked), but did not consider them for detailed analysis. While the interaction

between developers and users was analyzed, it was for a small sample of bug reports. We

focused on IT support tickets and analyzed the analyst comments for a large number of

tickets.

When reporting a ticket, a template corresponding to the ticket category and subcategory

is chosen. For example, if a user selects the category as software and subcategory as install,

the ticketing system automatically asks the user to provide details as per the corresponding

template. Although ticket-reporting templates try to capture the required details, they have

limitations, motivating the need for the preemptive model:

∙ Users do not provide all the details asked in the initial template because of limited

understanding or time [114]. A balance needs to be maintained between two contra-

dictory demands: ask as much information as possible to help the analyst to service

the ticket in the best possible way and as little information as possible not to put too

much burden on the user submitting the ticket. It is not possible to make all the fields

mandatory because this would make it difficult for the users to submit their requests.

The preemptive model can help in such situations by preempting only if the missed

information is indeed crucial for processing the ticket. For example, if a user submits

a ticket in the software installation category and writes a description as “install latest

version of MS office” but leaves the version field blank, the system should allow the

user to submit this ticket without preemption because an analyst can service the ticket

by installing the latest version.

∙ If a user selects the wrong category for the ticket, the corresponding template will not

capture the information required to resolve the ticket. The learned model can preempt

the required information because the ticket description provided by the user is used as

one of the features for preemption and the model does not rely on the chosen ticket

category.
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∙ Users tend to provide incorrect or unclear information [114] to pacify the system, which

the learned model can preempt. For example, if a user mentions the version as some

random value, such as xx or 2.3 for MS Office, then the learned model still can preempt

and indicate that the version has been asked for similar tickets.

∙ Some tickets have specific information needs, which are not captured in the corre-

sponding template, for example, if a user requests for installing the software that has

a requirement such as approval for purchasing software license in case of specific pro-

prietary software. Such information needs are not always intuitive for users and hence

can be preempted by the learned model.

Effectively, the preemptive model should facilitate dynamic information collection for faster

processing of the reported ticket. Being a preventive measure, it helps in improving the

efficiency by eliminating later interaction delays and enhancing user satisfaction [114].

4.2 Preemptive Model: For Real User Input Requests

The preemptive model is an automated learning-based system deployed at the time of sub-

mitting a new ticket. It preempts the user to provide the information required for servicing

the ticket. As depicted in Figure 4-1, the major steps involved in designing the preemptive

model are preprocessing, feature extraction, training classification model, and preemption

for a new ticket at the time of submission. To preempt the information needed for a given

ticket, we learn the model to predict the following:

∙ P1: To process a given ticket, will there be user input request?

∙ P2: If there will be a user input request according to P1, what is the specific infor-

mation that is likely to be asked by the analyst?

To train a supervised model for P1, the ticket is labeled as 1 if Awaiting User Inputs state

is present in the ticket’s life cycle, otherwise 0. This information is derived from the event

log extracted for each ticket.
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Figure 4-1: Preemptive model to preempt users with additional information needs at the
time of ticket submission with broadly two stages: training and preemption.

4.2.1 Ground Truth

To train and evaluate the model for P2, we established the ground truth for information

needs. The ground truth [GT(x)] for a ticket with respect to specific information is defined

as follows:

𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ, 𝐺𝑇 (𝑥) =

⎧⎪⎪⎨⎪⎪⎩
1, if x information asked in ticket’s life cycle.

0, if x information not asked in ticket’s life cycle.

(4.1)

First, the information asked by the analysts (such as software name, software version,

machine IP address, operating system, and manager approval) in the user input request com-

ments was identified on the basis of the manager’s domain knowledge and manual inspection

of the user input request comments. Manual inspection was performed by the author and one

of her colleague for a disjoint set of comments (a random sample of 1000 comments each) to

identify the information needs. Information needs identified by the author and her colleague

were compared to create the consolidated list. They used different terms to represent the

same information needs, which were made consistent. Both of them identified the same 23

information needs with one exception, that is, asking the user the duration for which the

requested software would be used, which was identified by only one of them because it was

a rarely asked information. All the information needs mentioned by the manager turned out

to be a subset of the consolidated list.
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Establish ground truth by annotating comments using keywords-based approach:

The ground truth for every information need was established using a keyword-based approach

[127]. A list of keywords corresponding to each information need was prepared iteratively.

The initial set of keywords was created using the domain knowledge of the managers. For

example, for information need software version, “software version, sw version, and software

number” are some of the commonly used terms, which were included in the keywords list.

Porter stemming and case folding of comments and keywords were performed to improve the

matching of keywords with the comments. If the comment contained the keywords, it was

annotated with the corresponding information need. Thereafter, we (author and her col-

league) manually investigated the disjoint set of randomly selected unannotated comments

(around 500 each) to identify the comments missed out using a given set of keywords. Key-

words were added to the initial set to capture the missed-out comments. Also, a disjoint

set of annotated comments (50% of the total annotated by author and her colleague respec-

tively because it was typically a small set) was manually analyzed by the author and her

colleague to eliminate wrongly annotated comments. The keywords were updated to distill

the wrongly annotated comments. The comments were now annotated with the updated

set of keywords. This process was repeated two to three times until very few/no updates

were made in the set of keywords. Similarly, keywords were created for every information

need. Keywords for information can vary across the organization based on their specific

terminologies.

Evaluate ground truth established using keywords-based annotation: To evaluate

the keywords-based annotation, we decided to establish the ground truth for a set of com-

ments manually and compared it with the keywords-based annotation. For the ground truth

data, we requested second-year students of B.Tech in Computer Science of the university for

annotation. Each participant was promised a cash gift (of 1000 INR) as a token of gratitude.

We received interest from nine students and shared the details with each of them. Three of

them dropped out, and the remaining six were given a short in-person demonstration of the

tool (screenshot made publicly available on GitHub [120]) that we designed for convenient

annotation. The tool had a simple UI that showed comment for annotation and a list of

keyphrases, including manually identified 23 information needs as an option. Each partici-
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pant was given a set of 4000 different comments and 15 days’ time as agreed by students,

thus ensuring that they performed annotation without any pressure. Finally, we received an-

notated files from 5 participants, that is, 20000 annotated comments. The author randomly

verified 50 annotated comments for each student that is, a total of 250 annotated comments

(12.5% of total annotated). For every information need, keywords-based annotation was

compared with ground truth annotated by students. We observed that the keyword-based

annotation was consistent with the manually annotated ground truth for 90% − 95% com-

ments for various information needs. We compared the top five information needs only:

software version, IP address, approval, operating system, and asking location/cubicle ID of

the user. Manual inspection of the inconsistently annotated comments showed that, in some

cases, the keywords-based annotation was incorrect (the keyphrases did not match mostly

because of rare typos by analysts) and, in some cases, the students’ annotations were incor-

rect (attributed to human error). Therefore, we ignored this inconsistency. This validated

that the keywords-based approach correctly annotated the comments in most cases.

To annotate the ticket, every user input request comment for a ticket was checked for its

label. The ticket was labeled as 1 for the given information need if any of its comments were

annotated with the same information; otherwise, it was labeled as 0.

4.2.2 Ticket Preprocessing

A ticket consists of a short description and fields to capture category-specific information

about the ticket, such as software name, version, platform, and attachment such as man-

ager approval. Some of the ticket attributes can be free-form text data and hence require

preprocessing as shown in Figure 4-1. Common textual preprocessing practices, such as

case folding, stemming, stop words, and punctuation removal, were performed [128]. We

performed stemming using Porter stemmer [129]. Removing classical stop words, such as

“a” and “the”, was not sufficient because some stop words were specific to the context. For

context-specific stop word removal, we combined all the tickets into one text file and ex-

tracted the term frequencies (tf) of the unique tokens from the text. We manually created a

dictionary of stop words for a given context, which contained words such as “Dear”, “Please”,

and “Regards”. A complete list of stop words is made publicly available at the Github [120].
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4.2.3 Feature Extraction

As shown in Figure 4-1, a bag-of-words feature model is used to represent each unstructured

feature extracted from the ticket. A bag-of-words representation is known to extract good

patterns from unstructured text data [130]. The bag-of-words model can be learned over

a vector of unigrams or bigrams or both extracted from the text data. For instance, first

we tokenized the description of the ticket shown in Figure 3-10 and then stemmed the

tokens, that is, “following” was stemmed to “follow”. After stemming, we removed the stop

words “on”, “my”, “this”, “is”, “a”, “as”, and “per”. The resultant bag-of-words consisted

of unigrams “install”, “follow”, “software”, “machine”, “core”, and “EARC”. For most bag-

of-words representations, gram (unigram or bigram) features found in the training corpus

had weights such as binary or term frequency or term frequency-inverse document frequency

[128][131]. We used the bag-of-words feature with the term frequency weights. Concatenation

of bag-of-words features (both the unigrams and bigrams) with features corresponding to

other fields, such as platform name, was used as the feature description for the entire ticket.

Given the high-dimensional and sparse nature of the final representation, learning a classifier

might be affected by the curse of dimensionality [132]. Therefore, we applied principal

component analysis (PCA), a feature vector dimension reduction technique with minimum

information loss, such that 95% of the eigen energy was conserved [133]. For preemption,

a feature vector extracted from the ticket submitted by a user was mapped to the reduced

dimensional space learned from the training data.

4.2.4 Training and Preemption

The preemptive system was learned over features extracted using tickets’ data at the time

of submission. To address P1, a binary classifier was trained over a set of labeled tickets

to classify if the user input request was made for a given ticket or not. If the classifier

predicted the class as 1, that is, a user input request was made, the next question (that is

P2) was to identify the specific information likely to be asked, such as the version number

of software or approval for processing. To identify the need for each of the possible infor-

mation, an independent binary classifier was constructed. As shown in Figure 4-1, when a
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new ticket was submitted, the cumulative results of the learned binary classifiers suggested

the subset of information that could be further required to easily process the ticket. By

dividing this complex task into simple binary classifiers, more flexibility was added to the

preemptive model. If a new information need was identified in the future, a new binary

classifier could be trained for the corresponding information without the need to retrain any

of the existing classifiers. In our study, we used a supervised learning model, support vector

machines (SVM) [134]. SVM is a binary linear classifier that attempts to find the maxi-

mum margin hyperplane, such that the distance of data points from either of the classes is

maximized. Furthermore, it performs classification very effectively using a technique called

a kernel trick, by implicitly mapping input data into a higher-dimensional feature space,

where linear classification is possible. SVM is a popular choice and is often used in the

literature [27][135][136][137][138][139]. To compare the efficiency of SVM for the proposed

preemptive system, we evaluated other commonly used classifiers such as naive Bayes [140],

logistic regression [141], and random decision forest [142]. The performance of a classifier

strongly depends on the value of its input parameters, whose optimal choice heavily depends

on the data being used [143]. We chose the parameters for the classifiers using grid search

[144] and heuristics [145].

4.2.5 Evaluation

A 50/50 train/test split protocol was followed to train and evaluate the classifier. In compar-

ison with a more lenient protocol, such as 80/20 split, the proposed split was less risk-prone

in terms of generalizability [146]. To address the challenge of imbalanced class labels in

train data, we performed random undersampling of a majority class as recommended by

Japkowicz [147]. For creating the training set in a binary classification setting, 50% of the

data points were randomly taken from the minority class and an equal number of data points

were randomly sampled from the majority class. Thus, it was ensured that the training data

had an equal number of data points from both the classes. The remaining 50% data of the

minority class and all the remaining points of the other class were included in the test split

for evaluation (testing). To make a realistic estimation of the classifier performance and

to avoid any training bias, we performed random subsampling cross-validation (also called
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Monte Carlo cross-validation [148]) five times where new training and test partitions were

generated (at random) each time using the aforementioned protocol. The evaluation metrics

were averaged over the five rounds, and the standard deviation was computed.

Accuracy places more weight on the majority class than on the minority class, and thus

is prone to bias in case of imbalanced datasets [149]. Therefore, additional metrics, such as

precision and recall, are used. Classes with labels 1 and 0 correspond to positive and negative

classes, respectively. TP and TN denote the number of positive and negative examples that

are classified correctly, while FN and FP denote the number of misclassified positive and

negative examples, respectively. We evaluated the performance of the learned classification

model on the test set using the following evaluation metrics:

Accuracy = (TP + TN)/(TP + FN + FP + TN)

Precision of positive detection = TP/(TP + FP)

Recall of positive detection = TP/(TP + FN)

4.3 Detection Model: For Tactical User Input Requests

Identifying tactical input requests is important because such requests degrade user experi-

ence. Some of the user responses recorded in the ITIS information system of a large global

IT company are as follows:

∙ “I have already provided all the necessary inputs. Please take actions.”

∙ “Kindly let me know what inputs are required from my end. As mentioned in my

earlier comments, I have already provided the necessary information but I still see

the status as Awaiting User Inputs. It’s already been about a week since I submitted

this request and the issue has not been resolved as yet. Request you to kindly do the

needful.”

Although users and managers recognize tactical user input requests, following are the

challenges in handling this practice, thereby highlighting the need for an automated detection

system:
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∙ By the time users recognize tactical user input requests and give feedback, the user

experience has already been degraded. With the automatic detection system, it is

possible to identify such requests in a proactive way and prevent users from receiving

such requests, thus enhancing user experience.

∙ Merely looking at the complaints gives a biased impression because not every user

raises a complaint about such tactical user input requests. Raising complaints is an

additional effort for the users, which every user may not like to do. Moreover, many

users (specifically new ones) are not familiar with the process and the fact that service-

level clock pauses when a ticket is in Awaiting User Inputs state. Thus, they do not

realize the need to complain about such experiences.

∙ A manager needs to look at the comments manually to decide if an input request seeks

any information or not, that is, if it is tactical. This control is human intensive and not

always possible given the high number of input requests made by a team of analysts

every day.

∙ Automatic detection allows to derive actionable insights, thus helping managers make

informed decisions. For example, if tactical requests are made by specific analysts, then

they are tackled at the individual level. However, if they are practiced by the majority

of analysts, then organization-level decisions are taken, such as redefine service-level

resolution time limit or employ more analysts.

It is difficult to handle the tactical user input requests because of perpetual competition.

The proposed detection model was an initial attempt to identify tactical user input requests.

The detection model identified tactical user input requests in real time by analyzing ana-

lysts’ comments when changing the status to Awaiting User Inputs. For this, we suggested

classifying the user input requests using a keyword-based rule classifier. As part of this

classifier, we created a set of rules using which the comments were annotated. Rules are a

set of regular expressions derived to represent the keywords for tactical user input requests

in a concise way. Rules are created for identifying user input requests where no direct infor-

mation is asked. The domain knowledge of managers can be used to create an initial set of
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rules, which can be updated iteratively by manually inspecting the tactical comments from

the data corpus. Once the ruleset is ready, any user input request by the analyst is checked

against it for the classification. If the user input request is identified as tactical, it is logged

in the ITIS information system and the manager may be notified to take suitable actions.

As opposed to the preemptive component, we did not use machine learning because of the

differences in the context. As part of the preemptive model, information need is preempted

for resolving a ticket at the time of ticket submission, whereas in the case of a detection

model, a comment by an analyst during the ticket’s life cycle is classified (not preempted)

as tactical or not. For P2, the ground truth is created for a ticket by analyzing the analyst

comments, such as if a version is asked in some comment, then the ground truth for a ticket

is labeled as 1 with respect to a class version. Therefore, the preemptive model takes a

ticket as an input and preempts the information need using the learned models. Unlike the

preemptive model, detection of tactical user input requests requires learning a classification

model from labeled analyst comments. Because we manually created the ground truth

label for tactical comments using keywords-based approach (as done for P2), learning a

classification model does not add value. Comments can be classified as tactical using the

keywords-based approach as and when they are written by the analyst. Therefore, for a

given scenario, a set of rules to concisely represent the manually identified keywords for

tactical user input requests is sufficient. Learning a classification model for tactical user

input requests would have been an option if we had human-annotated tactical user input

requests available.

The detection model identifies whether an input request by the analyst belongs to one of

the classes below. The classes are created on the basis of data analysis and discussion with

the manager for a given case study. A separate set of rules is derived for each category.

∙ Temporize: The analyst indicates that the ticket will be handled soon and mentions

things such as “Work in progress” and “Will check and update”.

∙ Invalid: No valid character is present in the string; comments such as empty strings

or strings consisting of a few special characters only.

∙ Contact Me: The analyst asks the user to contact him/her over phone or chat or meet
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in-person instead of asking for specific information.

∙ Will Transfer: The analyst informs the user that the ticket will be transferred to

another analyst and marks the state as Awaiting User Inputs. The ticket is transferred

to another analyst later instead of transferring directly.

∙ Done So Check: The analyst asks the user to check if the resolution is satisfactory.

Ideally, the analyst should mark the ticket as Resolved when done with a resolution

from their side and let the user reopen, if unsatisfied.

This classification helps managers to decide on the appropriate course of action. For example,

if the class is Invalid, the user input request can be blocked and if the class is Contact Me,

then it can be logged for clarification with the involved user and analyst to verify whether

there was a need for contact.

For evaluation, we requested managers to randomly select comments from the classified

ones and indicate if they have been wrongly labeled. This ensured high precision, but it was

difficult to comment on recall. We did not know how many tactical comments were missed

because of the incomplete class list or incomplete dictionary for a class.

After explaining the details of the preemptive and detection model, we present a case

study to illustrate its effectiveness.

4.4 Case Study: IT Support System of a Large Global

IT Company

To demonstrate the usefulness of the proposed preemptive model and the detection model, we

present a case study on the same organization’s data as in case study III (refer to Chapter

3). We conducted experiments on a total of 96, 756 closed tickets belonging to the top

subcategory (tickets were labeled with specific subcategory), that is, install, within the

software category. A total of 57.25% of the tickets had user input requests in the life cycle.
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Table 4.1: Number of class-wise data points in the ground truth and test-train split for the
proposed preemptive model. Class 1, if the information is asked in the ticket life cycle; Class
0, information is not asked in the ticket life cycle.

Preempted Ground Truth Train Set Test Set
Information Class 1 Class 0 Class 1 Class 0 Class 1 Class 0
Awaiting User Inputs 55,398 41,358 20,679 20,679 34,719 20,679
Software Version 1,174 95,582 587 587 586 94,996
Approval 3,686 93,070 1,843 1,843 1,843 91,227
IP Address 2,750 94,006 1,375 1,375 1,374 92,632

4.4.1 Preemptive Model

To learn the model for P1 (to process the ticket, will there be user input request), tickets

were labeled on the basis of Awaiting User Inputs state in the life cycle. As shown in Table

4.1, 55398 (57.25%) tickets belonged to class 1, that is, they had at least one user input

request in the life cycle. The bias due to tickets with only tactical user input requests in

the life cycle affects the outcome of 𝑃1 because the model is learned to predict the class

for a ticket as 1 (i.e., some information will be asked) even if it had just tactical user input

requests. It is because such tickets also had Awaiting User Inputs state in the life cycle.

However, the outcome of 𝑃2 takes care of this limitation: if 𝑃1 predicts class as 1, binary

classifiers for every information need are executed and all of them give the output as 0

because none of the information was asked for the given ticket. Therefore, the user is not

preempted to provide any information. Moreover, only 3117 tickets (i.e., around 6% of total

tickets in class 1 for 𝑃1) just had tactical user input requests and still were assigned ground

truth label as 1. Thus such cases were ignored. Effectively, the preemptive model remains

independent of detection model and accurately preempts user for the additional information

needs.

We observed from the comments that different information was asked by analysts, such

as manager approval, operating system, location or cubicle ID, machine ID, IP address,

project code, purpose of download, problem screenshot, download URL, software name, and

software version. Therefore, the information requested by the analysts can be classified

into three categories: information, such as the IP address or the machine ID, that can

be derived automatically; information, such as software name or software version, that is
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explicitly asked in the ticket template; and information, such as the manager approval, that

is not explicitly asked in the ticket template but might be requested by the analyst under

specific circumstances. To represent each of these categories, we addressed P2 (what specific

information is likely to be asked) for the IP address, software version, and manager approval,

corresponding to 3.5%, 1.5%, and 4.8% of the 77, 333 user input requests derived from

55, 398 tickets, respectively. To illustrate the effectiveness of the preemptive model to predict

information needs, we chose specifically these three for the aforementioned categories because

these were one of the frequent information needs and evaluated as part of the keyword-based

annotation (refer to Section 4.2.1); thus, the ground truth was close to reality. Similarly,

independent binary classifiers could be trained for preempting other information needs.

The ground truth is labeled for the information needs using a keyword-based approach (as

discussed in Section 4.2.1). All the information needs and the corresponding list of keywords

were made publicly available [120]; however, labeled data could not be shared because of

company policy concerns. We noticed from the ground truth in Table 4.1 that a relatively

small percentage of tickets belonged to class 1, that is, the data were imbalanced, likely to

overfit to the majority class [150].

The following information was extracted from a user-submitted ticket: description, soft-

ware name, software version, platform, doc-attached, and time of reporting. Doc-attached is

a binary field indicating the presence or absence of an attachment. Platform is a categorical

attribute with seven unique values, such as Windows, Linux, and Unix. Time of reporting is

mapped to three ranges in a day, that is, morning (before noon), afternoon (from noon to 4

PM), and evening (after 4 PM). Overall, we had 21 possible values for a time corresponding

to the 7 days of the week. Description, software name, and software version were free-form

text fields. The data from all the three fields for a given ticket were concatenated and pre-

processed using case folding, stemming (using the Porter stemmer [129]), and stop words

removal. We manually created a stop words dictionary, on the basis of term frequency, for

given context publicly available [120]. Also, we removed all the punctuation marks except

period because the period is used in the IP address mentioned in the description.

As shown in Table 4.1, the testing and training data were created as per the 50/50

train/test split protocol with random undersampling of the majority class (cf. Section 4.2).
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Table 4.2: PCA is applied to reduce feature dimension, and a reduced feature vector is used
for training. The table presents the number of features before and after applying PCA.

Preempted Information #Features before PCA #Features after PCA
Awaiting User Inputs 1357 493
Software Version 33 17
Approval 119 50
IP Address 96 42

Preprocessed text field for tickets in the training data were represented as a term frequency

vector of both unigrams and bigrams. Many unigrams and bigrams have very low frequency

adding to the feature sparsity. Thus, we eliminated them by setting the term frequency

threshold as 150. We started with a low threshold, tried for random values, such as 50,

100, 150, and 200, and observed that 150 worked the best, given the trade-off between the

model computation time and the performance. The reduced feature set of unigrams and

bigrams was concatenated with the other three features (platform, doc-attached, and time

of reporting) to represent a ticket. Thereafter, we reduced the dimension of the ticket feature

vector by applying PCA. We noticed from Table 4.2 that the feature length was different

for models corresponding to different information needs because the training data set was

different.

Using the list of features and the labeled training data set, an SVM was trained with

different kernels, such as linear, polynomial, and radial basis function (RBF) kernel, using

LIBSVM [134]. We found experimentally that RBF kernel performed the best with 𝑐 = 8

and 𝑔 = 2, where 𝑐 and 𝑔 are the input parameters. A grid search was performed using

a validation set and 𝑐 = 8 and 𝑔 = 2 were obtained as the best set of optimal parameters

[144]. The performance of the learned classification model is shown in Table 4.3 on the test

set using the discussed evaluation metrics in Subsection 4.2.5. Further, the performance of

the proposed SVM classifier was compared with some baseline and popular classifiers in the

literature, such as naive Bayes, logistic regression, and random decision forest. For logistic

regression, the threshold hyperparameter was manually fine-tuned to be 0.5. Breiman et al.

discussed some experimental heuristics to tune the parameters of RDF [145]. Based on these

intuitions, the parameters of RDF used in our experiments were number of trees = 200,

bootstrap ratio = 0.7, and subset of features per tree = 0.6. The average results obtained
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Table 4.3: Table showing the performance of the prediction model by comparing various
popular classifiers with the proposed SVM. The best results are from SVM for any informa-
tion needed. LR, Logistic Regression; NB, naive Bayes; RDF, random decision forest; SVM,
support vector machine.

Evaluation
Metric

Awaiting
User
Inputs

Version Approval IP Ad-
dress

N
B

Accuracy 54.38±0.09 62.19±0.54 70.41±0.29 60.41±0.72
Precision 53.42±0.08 63.71±2.29 73.54±0.23 63.21±1.24
Recall 68.48±0.32 57.58±7.03 63.75±1.20 49.92±1.06
F-Score 60.02±0.13 60.29±4.03 68.29± 0.7 55.77±0.82

LR

Accuracy 61.85±0.17 62.84±0.98 72.55±0.53 63.13±0.47
Precision 62.21±0.11 65.78±1.33 76.98±0.80 65.95±0.52
Recall 60.37±0.45 53.63±2.91 64.35±0.75 54.30±1.46
F-Score 61.28±0.24 59.05±1.84 70.1± 0.56 59.55±0.91

R
D

F Accuracy 99.51±0.01 91.36±0.92 97.73±0.30 96.58±0.42
Precision 99.83±0.02 94.78±1.45 99.36±0.24 98.39±0.56
Recall 99.20±0.03 87.60±2.84 96.07±0.75 94.72±0.72
F-Score 99.51±0.02 91.03±1.68 97.69±0.41 96.52±0.46

SV
M

Accuracy 99.83±0.01 94.96±0.69 99.28±0.17 98.69±0.14
Precision 99.94±0.02 95.59±0.92 99.56±0.23 98.89±0.20
Recall 99.73±0.02 94.28±1.82 99.00±0.24 98.49±0.26
F-Score 99.83±0.01 94.92±1.03 97.25±0.17 98.69±0.16

over five-times repeated random subsampling for all the classifiers are tabulated in Table 4.3.

The receiver operating characteristic (ROC) curve is presented in Figure 4-2 for SVM and

random decision forest classifier as they performed better for all the four models. The major

observations drawn from the results were as follows:

1. The proposed SVM classifier provided the best overall classification accuracy in the

range of 95%–99% for all the information needs. SVM was expected to perform the best

with optimal parameter values as it was regarded as one of the best classifiers in the

literature for text classification tasks [27][135][136][137][138][139]. It was observed that

both precision and recall of the classifier were high, suggesting that the classifier was

not biased toward any particular class. It was possible because random undersampling

of the majority class was performed at the time of training to handle an imbalanced

class problem.
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(b) Software Version(a) Awaiting User Inputs (c) Approval (d) IP Address

(b) Software Version(a) Awaiting User Inputs (c) Approval (d) IP Address

Figure 4-2: ROC for SVM- and RDF-based preemptive model to illustrate their performance
for different information needs: (a) awaiting user inputs, (b) software version, (c) approval,
and (d) IP address. The y-axis was cut at 0.8 to zoom in the point of bending for ROC
curves.

2. It was observed that an ensemble learning-based classifier, such as random decision

forest, performed comparable to SVM. Thus, SVM is not a strict choice for choosing the

classifier of the preemptive system. SVM performed a kernel trick to project the feature

space into a suitable higher-dimensional space where linear classification was possible,

while RDF combined the classification results of multiple individual classifiers, making

the classification decision robust. The logistic function of the regression classifier tries

to fit a linear boundary in the provided feature space, leading to an approximate

classification. Hence, logistic regression performs poorly compared with SVM and

RDF. As a sparse feature representation is obtained from the bag-of-words model,

models such as naive Bayes perform poorly in trying to fit distribution for the data.

3. Figure 4-2 shows the ROC curve plotted between the false accept rate (in log scale)
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Table 4.4: Categories in tactical user input requests with total comments in each class,
percent of total comments, and example keywords

Class #Comments % of Comments Example Keywords
Temporize 6272 8.11% In progress, working, will do it
Invalid 645 0.83% No alphanumeric character
Will Transfer 482 0.62% Transfer to, assign to
Contact Me 21081 27.26% Ping me when free, call me @
Done So Check 4414 5.70% Installed, completed, check

and true accept rates, comparing the performance of SVM and RDF classifiers across

all information needs. The ROC curve shows the trade-off between sensitivity (also

called recall) and specificity, providing the number of true detects for a given number

of fall-outs. For all the information needs, it was observed that SVM performed better

than RDF by correctly detecting more than 95% of the test cases.

4. It is to be noted that the test data were unseen data for the classifier. Thus, the

performance of the classifier, as shown using the test data, was equivalent to the

performance of the classifier as deployed in a real-time environment.

We made the trained preemptive model and code publicly available [120] and they can be

used by other researchers in their experiments.

We achieved very high accuracy using SVM and RDF, but it was not overfitted because

the test data were different from the training data. This performance was achieved after

fine-tuning the parameters to optimal values for given data; otherwise, for some parameter

values, the performance was no better than naive Bayes and logistic regression. We evaluated

the performance of the presented preemption model for different information needs on real

data for a large global IT company. However, the data were from the same organization’s

IT support information system. Thus, the performance of the preemption model might vary

with different ticket dataset, more so because the performance of a classifier strongly depends

on the value of its input parameters, whose optimal choice heavily depends on the data being

used.
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Table 4.5: Real example comments for each category of tactical user input requests

Class Example Comments

Temporize
“We are trying to find the solution for the prob-
lem.We shall get back you soon.”
“Please provide sometime it will be done asap”
“Will check and update the status.”

Invalid “...”, “-”, “ ”

Will Transfer
“Will Assigned to L1 Team. They will reach you
shortly.”
“Transferring to concerned person.”
“This request is not under my scope of work. I will
contact admin and transfer it to correct analyst.”

Contact Me
“Please ping me when you are available.”
“Please Ping/Call me once you are at your desk
and free so that we can work on your request.”
“You seem offline. Please contact me once you are
available.”

Done So Check
“The requested software has been installed. Please
check and close the request.”
“Please check and update.”
“It has been done. Kindly check it.”

4.4.2 Detection Model

A set of rules was derived iteratively for each of the five categories using the approach

suggested in Section 4.3. For example, the rule for category transfer was that comment

description should be like “*transfer to*” or “*assign to*”. Example keywords in generating

rules for each category are shown in Table 4.4, and the complete set of rules for reference

are made publicly available [120]. The given data set, that is, 77, 333 analyst comments,

corresponding to 96, 756 closed tickets for subcategory install were classified using the de-

signed rule-based classifier. We performed stemming and case folding of comments to ensure

that matching was case insensitive, and removed special characters. The total number of

data points classified to each of the categories is summarized in Table 4.4. Around 42.52%

of the total user input requests were classified to one of the five listed categories. Managers

expressed that although it was very useful to know comments from the Contact Me cate-

gory, it needed to be tackled differently compared with other tactical categories. This was

because they believed that although no direct information was asked in such comments, the
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analyst asked the user to contact them. Therefore, there was a high possibility that the an-

alyst asked for inputs in follow-up communication with the user over phone or chat. Hence,

whether it is truly tactical or not also depends on the reason for asking the user to contact

them, which is not captured in the comment, and therefore cannot be concluded as a clear

case of tactical. As a result, comments from the other four categories constituting around

15.27% of the total user input requests are considered as tactical. The most frequent tactical

category is temporize, constituting 8.11% of the total of user input requests. Interestingly,

645 input requests consist of nonalphanumeric characters such as dash, periods, and NULL.

Table 4.5 presents some of the comments from the IT support system, which are classified

in the presented classes using the proposed detection model.

For evaluation, we requested 2 managers with experience (as manager in the same or-

ganization) of 3 − 5 years to independently and randomly pick around 100 comments each

from the classified ones. They were requested to make sure that the sample contained com-

ments from all the five categories shown in Table 4.4. They manually inspected the sampled

comments and indicated if the comment was wrongly classified to a category. In all cases,

the managers agreed that the comment classified to a category indeed belonged to the same.

Both the managers mentioned that it was really useful to have categories within tactical

because each category might need to be tackled differently. Though the completeness is

not guaranteed with this evaluation, the detection model precisely classifies comments to

categories of tactical requests, which can be handled accordingly.

The detection model classifies user input requests to refined tactical classes. However,

the list of classes is not exhaustive and can vary with the organization. It is possible that an

analyst seeks information, which is not really required to resolve a ticket. However, it looks

like a real user input request because in the given solution only non-information-seeking user

input requests were detected as tactical. Such cases go undetected with the given solution.

4.5 Destination State Analysis

We analyzed the comments classified to one of the tactical categories and the ones not

classified to any tactical class (referred to as real user input request) for the destination
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Table 4.6: Destination state transition analysis for different types of user input requests

User Update No Update
Type of User
Input Re-
quest / Dest.
State

User In-
put Re-
ceived

Attach
doc

Closed Resolved AUI -
Auto-
closure

Transfer

1. Real User
Input Request
(44,439)

18,224
(41.0%)

4,340
(9.8%)

7,429
(16.7%)

5,678
(12.8%)

4,432
(10.0%)

2,222
(5.0%)

2. Contact Me
(21,081)

5,469
(26.0%)

186
(0.9%)

3,093
(14.7%)

9,202
(43.6%)

1,143
(5.4%)

1,191
(5.6%)

3. Done So
Check (4,414)

941
(21.3%)

58
(1.3%)

1,517
(34.4%)

1,466
(33.2%)

226
(5.1%)

97
(2.2%)

4. Invalid
(645)

160
(24.8%)

4
(0.6%)

29
(4.5%)

362
(56.1%)

8 (1.2%) 62
(9.6%)

5. Temporize
(6,272)

1,873
(29.9%)

84
(1.3%)

514
(8.2%)

2,569
(41.0%)

289
(4.6%)

715
(11.4%)

6. Will Trans-
fer (482)

46 (9.5%) 4
(0.8%)

27
(5.6%)

21 (4.4%) 12
(2.5%)

350
(72.6%)

state. Table 4.6 presents the transition of different user input request types to most frequent

destination states. We tested if a relationship existed between user input request type and

destination state using the chi-square test for independence because both are categorical

variables and every cell has an expected value of more than 5. The p-value for the significance

test was too low to be computed (less than 0.01). Thus, the two variables were significantly

related to each other. From Table 4.6, we made the following observations:

∙ Most frequent destination state (highlighted with bold) for tactical categories (2 − 5

in Table 4.6) was from No Update, that is, Resolved, AUI-Autoclosure, and Transfer.

However, the most frequent destination for real user input requests was from User

Update. This validates our conjecture that if no update is obtained from an user for

a user input request, then it is more likely to be tactical; and if the user provides any

update, then it is more likely to be a real user input request.

∙ For real user input requests, user inputs were received for the majority (around 41%)

of the cases. In some cases (around 17%), tickets were closed by users without getting

them resolved.
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∙ For Contact Me AUI, either the user gave some inputs (as destination state is User

Input Received for 26.0% comments) or the ticket was Resolved (for 43.6% cases) based

on the interaction between the user and the analyst outside the ticketing system (not

recorded in the database).

∙ Done So Check type AUIs have Closed (34.4%) and Resolved (33.2%) as the most

frequent destination state. Closed indicates that the user was satisfied with the resolu-

tion, hence closed. Many a time, the user confirms with a comment in response to this

input request. Hence, User Input Received is also a quite frequent destination state.

Apart from this, Resolved is a frequent state indicating that the user did not confirm

the resolution and the analyst marked it as Resolved after some time.

∙ For Invalid AUIs, which are a clear case of tactical input requests, the most frequent

destination state is Resolved (around 56.1%). In cases where the destination state is

User Input Received, the input from the user is most likely an expression of displeasure

or clarification as observed by manually analysing a random set of around 20 such cases.

∙ For Temporize AUI, maximum transitions are to state Resolved (for around 41.0%

times), that is, the analyst actually did not need any information and misused the

label. For instances with the destination state as User Input Received, users mostly

clarified with analysts the information they are supposed to provide.

∙ Will Transfer AUI is often followed by the Transfer (for 72.6% times) of ticket with

few exceptions.

The p-value (less than 0.01) and aforementioned observations validate our conjecture

that destination state gives an indication about the type of user input requests. Therefore,

the manager can leverage the transition pattern (output of process mining) to decide if there

is need to reduce real or tactical or both user input requests.
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4.6 Threats to Validity

The participation by students for the manual annotation of comments was incentivized with a

cash gift of 1000 INR, as a token of gratitude. This incentive could have been the motivation

for showing interest in the task initially. However, out of nine volunteers, three dropped out

after attending the demo and only five out of six actually finished the annotation. The

timeline given to the participants was as per their convenience so that they had sufficient

time. Given the volunteers always had a choice to drop out and were allowed to finish as per

their timeline, we believed that the quality of annotation was not really influenced by the

fact that it was incentivized. Further, the author randomly verified 50 annotated comments

for each student for a sanity check. Therefore, we believed that the errors in annotation

were more likely to be genuine human errors and less likely to be an influence of incentive.

We evaluated the performance of the presented preemptive model for different information

needs on real data for a large global IT company. However, the data were from the same

organization’s IT support information system and thus the performance of the preemptive

model might vary with different ticket datasets. This was more so because the performance

of a classifier strongly depended on the value of its input parameters, whose optimal choice

heavily depended on the data being used. Therefore, the proposed preemptive model might

preempt information needs in different contexts less accurately, leading to a smaller reduction

in later user input requests.

For preemptive model evaluation, the train/test split is performed randomly and not as

sliding window. While the ticket data are time series, the prediction of information needs for

ticket resolution does not depend on the timeline. Therefore, we opted for random split. We

used one-quarter data during which there were no changes in the ticket resolution process.

Further, we did not use timestamp as a feature, but mapped it to three ranges of the day

(morning, afternoon, and evening).

The evaluation of the preemptive model was done on the test data but not in production.

As the test data were unseen, we believed that the performance was close to reality and the

model efficiently reduced user input requests. However, it depends on the way the preemptive

model is applied in practice. For instance, if applied as a recommendation system, then there
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is a performance improvement only if the users choose to provide the preempted information.

The detection model classified user input requests into refined tactical classes. However,

the list of classes was not exhaustive and could vary with the organization. While the detec-

tion model had high precision, it was difficult to guarantee high recall because of incomplete

tactical request classes.

While the ITIS information system is the recommended communication channel between

analysts and users, there can be communication over chat and telephone. The data for

communication over these channels were not accessible for analysis because of confidentiality

and privacy reasons. We distinguished between analysts requesting information outside the

ITIS and users providing the information outside the ITIS. The former was unlikely to happen

as the SLA clock would not be affected. The latter would not affect the detection model,

as the detection model analyzed the comments made when the analysts marked a ticket

as Awaiting User Input. However, the validity of the preemptive model might have been

affected as follows: The preemptive model inherently reflected the data it was trained upon,

and as no information was available about the communication outside the ticket tracking

system, the preemptive model might not adequately reflect the information needs expressed

in such communication.

4.7 Summary

We analyzed the IT support ticket data in case study III (from Chapter 3) to capture the

process reality, especially the user input requests made during the ticket resolution life cycle,

by applying process mining. Also, we studied the impact of user input requests on the overall

user-experienced resolution time. We observed that around 57% of the tickets had user input

requests in the life cycle, causing user experienced resolution time to be almost twice as long

as the measured service resolution time. It should be ensured that the information required

for ticket resolution is collected from the user upfront, thus reducing real user input requests.

However, users do not have a clear idea of what information will be required for resolving

a specific ticket. Therefore, in this chapter, an SVM classifier-based preemptive model was

learned to preempt users with the need for additional information during the time of ticket
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submission. The proposed preemptive system preempted the information needs with an

average accuracy of 94–99% across five cross validations while traditional approaches such

as logistic regression and naive Bayes had accuracy in the range of 50–60%. Also, we noticed

non-information-seeking tactical user input requests for the sake of service-level compliance.

The rule-based detection model identifies such input requests, and thus can be discouraged.

The detection system identified around 15% of the total user input requests as tactical. The

performance of the proposed preemptive model and detection model on the real-world data

for a large global IT company shows the effectiveness of our solution approach in reducing

the number of user input requests in tickets’ life cycle.

Reduction in ticket resolution time depends on the application of a preemptive and de-

tection model. Thus, we cannot estimate the effective reduction in resolution time. However,

given the observation that user input requests cause user-experienced resolution to be much

higher than measured service resolution time, reduction in user input requests definitely leads

to a significant reduction in the resolution time. In the existing approach, every information-

seeking user input request is considered as real irrespective of whether it is really required

to resolve the ticket or not. In the future, we plan to extend the detection model to also

identify the cases where unnecessary information is asked, which is another way of making

tactical requests. It requires further investigation of user input requests and understanding

of information actually being used for resolving the ticket.
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Chapter 5

Analyzing Comments in Ticket

Resolution Process to Capture

Underlying Process Interactions

Activities in the ticket resolution process have comments associated with them. Process

discovery, as discussed in Chapter 3, is activity focused, that is, it uses structured logs and

does not analyze the comments. However, comments can provide additional information

for performing the activity efficiently. One of the problems identified from the survey, as

listed in Table 2.1, is “facilitate in-depth understanding of points where things went wrong

by deriving and understanding actual process at a more granular level”, that is, 𝑃20. In

this study, we aimed at discovering the detailed process model for ticket resolution process,

using the information present in the comments. The discovered model can then be used to

identify the inefficiencies.

To model the detailed process, we extracted the topical phrases (keyphrases) from the

comments generated during the process execution, using an unsupervised graph-based ap-

proach. These keyphrases were then integrated into the event log to derive enriched event

logs. A process model was discovered using the enriched event logs wherein keyphrases were

represented as activities, thereby capturing the flow relationship with other activities and

the frequency of occurrence. This provided insights that could not be obtained solely from

the structured data (i.e., activities), and these insights could be used to perform the ticket
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support process model for large
global IT company, illustrating the
enrichment of model by integrating
underlying activities viz. keyphrases,
extracted from the comments for
Need Info activity.

Change	Value
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Need	Info	– Client
0.116

Edit	History
0.030

Figure 5-1: A real motivating example that compares the process model from structured logs
with the model with underlying activities as per the keyphrases extracted from comments.

resolution process more efficiently. To evaluate the approach, we conducted a case study

on the ticket data of a large global IT company. We first extracted the keyphrases from the

comments associated with the ticket activities with an average accuracy of around 80%. This

enabled us to succinctly capture the additional information about the activities influencing

the ticket resolution process and often causing delays, such as extra information required,

priority, and severity. The model allowed the managers to understand in detail the process

realities and identify opportunities for improvement. In this case, for example, the manager

identified that having a bot to capture the information or adding a mandatory field in the

initial ticket template, so as to reduce the delays incurred while waiting for information, can

reduce the time (he subsequently had his team implement the bot).
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5.1 Usefulness of Information in Comments

A lot of rich information is present in the comments generated during the process execution,

which needs to be integrated into the discovered process model for in-depth process under-

standing. The in-depth unstructured data-driven (e.g., comments) insights help effectively

identify the inefficiencies and make informed process improvement decisions.

Figure 5-1 shows the snapshot of a real example of a discovered process model snapshot

for the ticket resolution process of a large global IT company. As part of the ticket resolution

process, an analyst (person responsible for servicing the ticket) can ask the user to provide

additional information by writing a comment, which gets captured in the information system

as an event, Need Info - Client. An analyst can ask for different information, such as

error messages and operating system, which gets recorded in the comments. A process

model is discovered using only a structured event log containing a single activity, Need

Info - Client (refer to Fig. 5-1, left panel). We extracted the keyphrases from all the

comments corresponding to the activity Need Info - Client, using an unsupervised graph-

based keyphrase extraction approach. The extracted keyphrases represented information

typically asked by analysts, using which an enriched event log was derived where the activity,

Need Info - Client, was mapped to relevant keyphrases on the basis of the comment. The

process model discovered using the enriched event log (refer to Fig. 5-1 - right panel)

presented the underlying interactions of the process with activities such as email invitation,

screenshot, web browser, operating system and error message, each corresponding to an

information asked by the analysts (highlighted in Figure 5-1, right panel). This allowed

discovering the in-depth reality, which cannot be observed from Figure 5-1, left panel. Thus,

the following informed improvement decisions could be made to mitigate the delays incurred

while waiting for information from the user:

∙ As detailed description (relative frequency is 0.178) is asked more often, the IT com-

pany should deploy a system such that a user can be preempted at the time of ticket

submission to provide the same upfront [151] (as discussed in Chapter 4).

∙ A user is typically asked to provide an error screenshot after asking for company testing;

therefore, analysts can be preempted to ask both the screenshot and the company
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Figure 5-2: Proposed approach to discover the underlying process interactions using com-
ments.

testing at the same time.

∙ As information about the operating system and web browser is asked in the comments,

a bot can be designed to automatically detect this information at the time of ticket

submission.

This example highlights the potential of our approach for effective process improvement,

by deriving keyphrases from comments corresponding to activities and representing them as

part of the discovered process model.

5.2 Proposed Approach

To achieve the objective of integrating knowledge captured in unstructured data, namely

comments into the discovered process model, we presented an approach consisting of multiple

steps, as shown in Figure 5-2. First, a process analyst can select the activity for which the

comments should be analyzed for in-depth process understanding. Performing this selection

is important because a granular view of every activity can make the discovered process model

look like spaghetti. Also, it needs to be decided on the basis of analysis to be performed,

such that activities not captured in the structured logs are inferred from the comments.

Thereafter, the comments corresponding to selected activities are preprocessed and used

for candidate keyphrase extraction in an unsupervised manner. Extracted candidates are

ranked and processed to select most relevant keyphrases which in turn are used to annotate
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the comments, thus, deriving an enriched event log. Finally, using the enriched event log,

the process model capturing the flow relationship and frequency is discovered.

5.2.1 Unsupervised Keyphrase Extraction

Keyphrase extraction aims at automatic selection of important and topical phrases from

the body of documents [152]. Automatic keyphrase extraction is used for a wide range

of natural language processing and information retrieval tasks such as text clustering and

summarization [153][154], text categorization [155], and interactive query refinement [152].

However, the application of keyphrase extraction to business process model enrichment is

not explored.

Broadly, keyphrases are extracted using two approaches: supervised and unsupervised.

In the supervised approach, a model is trained to classify a candidate keyphrase, requiring

human-labeled keyphrases as training data. It is impractical to label training data (in this

case, process execution comments), given the effort required for manual labeling. Thus, we

focused on the unsupervised approach for our purpose. Unsupervised approaches can be

grouped as follows [156]: graph-based ranking, topic-based clustering, simultaneous learn-

ing, and language modeling. Graph-based ranking methods are state-of-the-art methods

[157], based on the idea of building a graph from the input document. Nodes in the graph

are ranked based on their importance to select the most relevant keyphrases. Therefore,

we used CorePhrase [158], a graph-based algorithm for topic discovery, that is, keyphrase

extraction from multidocument sets based on frequently and significantly shared phrases be-

tween documents. The algorithm is domain independent and thus suitable for our purpose

with some adaptations. The algorithm first identifies a list of candidate keyphrases from

the set of documents and then selects top 𝑛-ranked keyphrases for the output by using a

ranking criterion. The ranked keyphrases are then postprocessed to be adapted according

to the domain.

Preprocessing of Comments: The comments from event logs are preprocessed (Prepro-

cess in Algorithm 3) including stemming, case folding, removal of HTML tags, stop words,

and special characters. Further, we created a set of unique sentences across all the comments

to improve the scalability of the approach. The sentences in the comment were demarcated
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Algorithm 3: Unsupervised Keyphrase Extraction
1 Input: Initial Event Log EL (CaseID, timestamp, Activity, Comments)
2 Output: Keyphrase List K for Selected Activity A
3 Variables: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑘𝑒𝑦𝑝ℎ𝑟𝑎𝑠𝑒 𝑙𝑖𝑠𝑡 : 𝑀 ← [], 𝑙𝑜𝑜𝑘𝑢𝑝𝑡𝑎𝑏𝑙𝑒 ← [], 𝑠𝑐𝑜𝑟𝑒← [],

𝐺𝑙𝑜𝑏𝑎𝑙 𝐺𝑟𝑎𝑝ℎ : 𝐺← []
4 𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠← 𝑆𝑒𝑙𝑒𝑐𝑡𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦(𝐸𝐿, 𝐴)
5 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠← 𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝑐𝑜𝑚𝑚𝑒𝑛𝑡𝑠)
6 𝐺← 𝐺𝑙𝑜𝑏𝑎𝑙𝐺𝑟𝑎𝑝ℎ(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠)
7 for 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒 in 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒𝑠 do
8 𝐺𝑐 ← 𝐺𝑟𝑎𝑝ℎ(𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)
9 𝐺𝑢 ← 𝐺− 𝑒𝑑𝑔𝑒𝑠(𝐺𝑐)

10 𝑝ℎ𝑟𝑎𝑠𝑒𝑠← 𝐺𝑢 ∩𝐺𝑐

11 𝑀 ←𝑀 ∪ 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
12 𝑙𝑜𝑜𝑘𝑢𝑝𝑡𝑎𝑏𝑙𝑒[𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒]← 𝑝ℎ𝑟𝑎𝑠𝑒𝑠
13 for 𝑚 in 𝑀 do
14 𝑝𝑓 = 𝑃ℎ𝑟𝑎𝑠𝑒𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑝ℎ𝑟𝑎𝑠𝑒)
15 𝑐𝑓 = 𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦(𝑝ℎ𝑟𝑎𝑠𝑒)
16 𝑠𝑐𝑜𝑟𝑒[𝑚]← 𝑝𝑓 ×−𝑙𝑜𝑔(1− 𝑐𝑓)
17 𝑠𝑐𝑜𝑟𝑒𝑛 ← 𝑆𝑜𝑟𝑡(𝑠𝑐𝑜𝑟𝑒, 𝑛)
18 𝐾 ← 𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠(𝑠𝑐𝑜𝑟𝑒𝑛)
19 return K

by a period. A unique set was identified from the initial set of sentences corresponding to

all the comments. This significantly reduced the number of sentences to be processed in

further steps because the sentences were repeated across various comments (emails). This

preprocessing did not affect the final set of extracted keyphrases because the keyphrase for

a comment was a set of keyphrases extracted for its constituting sentences.

Candidate Keyphrase Extraction: To extract candidate keyphrases, the algorithm com-

pares every pair of sentences to identify the common phrases. If there are 𝑛 sentences in the

corpus, comparing every pair is inherently 𝑂(𝑛2). However, as highlighted in the CorePhrase

[158] algorithm, using a data structure called the Document Index Graph(DIG), the com-

parison can be done in approximately linear time [159]. For our purpose, the DIG stored a

cumulative graph representing the entire set of unique sentences (e.g., 𝐺𝑙𝑜𝑏𝑎𝑙𝐺𝑟𝑎𝑝ℎ function

in Algorithm 3). When the keyphrase for a sentence has to be extracted, its subgraph is

matched (by performing graph intersection) with the cumulative graph (viz. Global Graph)

except for the sentence (Line 9 and 10 in Algorithm 3). It gives a list of matching phrases

120



between the sentence and the rest of the sentences. This process generates matching phrases

between every pair of sentences in near-linear time with varying length phrases. A master

list 𝑀 is maintained that contains unique matched phrases for all sentences that will be used

as a list of candidate keyphrases. A 𝑙𝑜𝑜𝑘𝑢𝑝𝑡𝑎𝑏𝑙𝑒 is also maintained that contains sentences

and the corresponding matching phrases (Line 12 in Algorithm 3), which can be used for

annotation (discussed in Section 5.2.2).

Ranking of Candidate Keyphrases: Quantitative phrase metrics are used to calculate

the score representing the quality of the extracted candidate keyphrase. The score is com-

puted as 𝑝𝑓×− log(1−𝑐𝑓), where 𝑐𝑓 is the comment frequency and 𝑝𝑓 is the average phrase

frequency. Inspired by term frequency-inverse document frequency (TF-IDF) [158], the score

rewards the phrases that appear in more documents (high 𝑐𝑓) rather than penalizing them.

For a phrase 𝑝, the comment frequency 𝑐𝑓(𝑝) is the number of comments in which 𝑝 ap-

pears, normalized by the total number of comments: |comments containing 𝑝|
|all comments| . The average phrase

frequency 𝑝𝑓 is the average number of times 𝑝 appears in one comment, normalized by the

length of the comment in words: arg avg[ |occurrences of 𝑝|
|words in comment| ]

Postprocessing of Ranked Keyphrases: Selected top-ranked keyphrases contain some

nonrelevant phrases, that is, phrases that fall out of the domain but still are common in

most of the comments. Examples of such phrases are thank you for contact, and contact

helpdesk. Such keyphrases are removed by creating a common domain dictionary that con-

tains unwanted words to be removed from the keyphrases (function 𝑃𝑜𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠 in Algo-

rithm 3). This domain dictionary thus postprocesses the keyphrases to obtain the final set of

keyphrases. The following is an example of how postprocessing is applied to the keyphrases:

Extracted Phrase: Please tell unemployment benefits

Postprocessed Phrase: Unemployment benefits

Here words please and tell belong to an unwanted dictionary, as they are not relevant in

keyphrases and thus removed. Also, if a keyphrase is a proper subset of any other selected

keyphrase, then it is removed to resolve the spurious multilabel assignment.
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ID Timestamp Activity Comment

T1 03.12.2017	13:53:24 New Raise	Ticket

T1 03.12.2017	14:25:30 Need	Info

For	further	assistance	please	send	
us	the	session	ID.	Also	let	us	know	
the	web	browser	and	operating	
system which	you	are	using.

T1 03.12.2017	17:20:10 Info	provided XXYZ, safari	and	Mac

T1 03.12.2017	17:50:05 Need	Info Please	tell	detailed	description	of	
the	issue	you	are	encountering

T1 03.12.2017	19:10:42 Closed Resolved

ID Timestamp Derived	Activity

T1 03.12.2017	13:53:24 New

T1 03.12.2017	14:25:30 Session ID

T1 03.12.2017	14:25:30 Web Browser

T1 03.12.2017	14:25:30 Operating System

T1 03.12.2017	17:20:10 Info	provided

T1 03.12.2017	17:50:05 Detailed	description	

T1 03.12.2017	19:10:42 Closed

Session	ID
Web	Browser
Screenshot

Error	Message
Operating	System

Extracted	
Keyphrases

Unannotated
Refer	Look	Up

Mapped	to	multiple	
keyphrases

Figure 5-3: Example to illustrate comment annotation for deriving an enriched event log.

5.2.2 Annotating Comments with Keyphrases to Derive Enriched

Event Log

The initial event log, EL, contains activities and corresponding comments. Once the keyphrases

are extracted, each comment in the dataset is analyzed to determine whether one of the

keyphrases matches with it. To make the matching consistent, we performed the same pre-

processing as mentioned earlier. If a comment contained a keyphrase, it was annotated with

the corresponding keyphrase. As we only extracted the top 𝑛 most relevant keyphrases, some

comments might be annotated by one or more keyphrases, while other comments might not

be annotated at all. To tackle the latter cases, we referred to the lookup table and retrieved

the keyphrases for that comment. These keyphrases were added as labels to the comment.

Therefore, maintaining the lookup table helped in assigning labels to otherwise unannotated

comments.

Figure 5-3 depicts a real example of an event log where the first comment for the activity,

Need Info, is mapped to three keyphrases. However, the second comment is not annotated

with any of the extracted keyphrases and, therefore, is mapped to detailed description after

referring to the lookup table. The enriched event log is generated with a new attribute,

derived activity, replacing activity and comment and representing the extracted keyphrases.

5.2.3 Evaluating Keyphrase Extraction and Annoation

We evaluated the quality of extracted keyphrases manually, that is, checked whether they

conveyed the required information. We asked two managers from the IT support team of
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the company to indicate whether the extracted keyphrases conveyed the important content

of comments.

Further, we needed to evaluate the annotation of comments. As discussed in Section

5.2.2, a comment can be mapped to multiple keyphrases. Therefore, we used multilabel

evaluation metrics that could be example-based or label-based [160]. We chose the example-

based evaluation metrics that could capture the average difference between the predicted

labels and the actual labels for each test example, and then averaged over all examples in

the test set. Thus, unlike label-based evaluation metrics, these metrics took into account the

correlations among different classes [161], which is of interest here. To evaluate the quality

of the classification (here, annotation of comments) into classes (here, keyphrases), we used

the following set of metrics, thus capturing the partial correctness [160]:

Let T be a multilabel dataset consisting of n multilabel examples (𝑥𝑖, 𝑌𝑖), 1 ≤ 𝑖 ≤

𝑛, (𝑥𝑖 ∈ 𝑋, 𝑌𝑖 ∈ 𝑌 = {0, 1}𝑘), with a labelset 𝐿, |𝐿| = 𝑘. Let h be a multilabel classifier

(here, annotator in Section 5.2.2) and 𝑍𝑖 = ℎ(𝑥𝑖) = {0, 1}𝑘 be the set of label memberships

predicted by h for the data point (i.e., comment) 𝑥𝑖.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦, 𝐴 = 1
𝑛

𝑛∑︁
𝑖=1

|𝑌𝑖 ∩ 𝑍𝑖|
|𝑌𝑖 ∪ 𝑍𝑖|

(5.1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑃 = 1
𝑛

𝑛∑︁
𝑖=1

|𝑌𝑖 ∩ 𝑍𝑖|
|𝑍𝑖|

(5.2)

𝑅𝑒𝑐𝑎𝑙𝑙, 𝑅 = 1
𝑛

𝑛∑︁
𝑖=1

|𝑌𝑖 ∩ 𝑍𝑖|
|𝑌𝑖|

(5.3)

𝐹1 = 1
𝑛

𝑛∑︁
𝑖=1

2|𝑌𝑖 ∩ 𝑍𝑖|
|𝑌𝑖|+ |𝑍𝑖|

(5.4)

𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐿𝑜𝑠𝑠, 𝐻𝐿 = 1
𝑘𝑛

𝑛∑︁
𝑖=1

𝑘∑︁
𝑙=1

[𝐼(𝑙 ∈ 𝑍𝑖 ∧ 𝑙 /∈ 𝑌𝑖) + 𝐼(𝑙 /∈ 𝑍𝑖 ∧ 𝑙 ∈ 𝑌𝑖)], (5.5)

where I is the indicator function which is equal to 1 if 𝑍𝑖 = 𝑌𝑖, else 0. Since HL is a loss function,

it should be minimum for better performance.

5.3 Case Study: IT Support Ticket Resolution Process

To illustrate the value of integrating knowledge from unstructured data into the discovered process

model, we performed a case study on the IT support process data of a large global IT company.

The dataset represented interactions between the users and the support team (analysts), and thus,

comments were present with relevant activities. While the IT support process was continuously
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Table 5.1: Experimental Results where K: Total extracted keyphrases in final set, L: average
number of labels for each comment, P: Precision, R: Recall, F1: F1 measure, and HL:
Hamming Loss.

Data K L P R A F1 HL
Change Value 33 3.63 84.74 % 81.27% 80.26% 82.12% 8.15%
Need Info 16 4.28 84.71% 89.97% 80.21% 86.57% 6.21%

monitored by the process analyst, the unstructured data, for example, comments, were not taken

into account.

Data extracted from the organization’s ticket system includes the required information about

a ticket starting from the time of ticket submission until it is closed. Downloaded data consists of

2620 tickets with 15, 819 events in total. We observed from the dataset that two activities (out of

19), Change Value and Need Info, existed where analysts wrote comments. The number of events

with the activities Change Value and Need Info was 4036 and 280, respectively.

In Change Value, changes in the ticket attributes were captured by a descriptive comment as

shown below with an anonymized example (for confidentiality):

Changed Category from "" to "Y". Changed Sub-Category from "" to "test reset". Changed

Severity from "" to "Sev 4". Changed Summary from "" to "reset the test". Changed

Support Contract from None to Contract1.

An analyst asks information from the user (here, customer) by writing a comment, which is

captured as activity Need Info in the database. For example,

Dear ABC, Thank you for contacting the Support Center. In order to assist you more

effectively we ask that you please provide the following information: Are you us-

ing a Macintosh Computer (Apple) or a PC (Windows)?: What web browser are you using

(Internet Explorer, Mozilla Firefox, Safari, Google Chrome)?: Website you were di-

rected to access: Session ID/login info: Detailed description of the issue you are

encountering: Screen shot of error message: Thank you in advance!

To enrich the event logs, we performed keyphrase extraction for these two activities. This

allowed us to precisely capture what values were changed and what information was typically

asked by the analysts, in coherence with the complete process flow. IT support data were not made

publicly available for confidentiality reasons; however, examples and results were included for an

explanation.
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5.3.1 Unsupervised Keyphrase Extraction and Enriched Event Log

Derivation

Comments for the selected activities, namely, Change Value and Need Info, were preprocessed. All

the preprocessing steps as discussed in Section 5.2.1 were performed and the final set of prepro-

cessed unique sentences was used for candidate keyphrase extraction. As per Algorithm 3, a set of

candidate keyphrases is extracted for all the activity sets. Extracted keyphrases were ranked using

the scoring function. We selected top 50 keyphrases from the ranked list that were postprocessed

as per the data properties. This postprocessed set of final keyphrases was used for annotating the

comments as discussed in Section 5.2.2, thus generating enriched event logs . All the data sets (each

corresponding to an activity) had some unannotated comments for which we referred to the lookup

table, and hence assigned keyphrase. Effectively, the total number of unique keyphrases (𝐾) in the

resulting enriched event log was 33 and 16 for Change Value and Need Info, respectively (refer to

Table 5.1). The average number of keyphrases, 𝐿 ≃ 4 for Change Value and Need Info indicated

that multiple important topics were present in a comment, that is, multiple ticket attributes were

changed and multiple information was asked in the same comment.

5.3.2 Visualizing and Analyzing an Enriched Process Model

Enriched event logs are used for process discovery using ProM. We presented and compared Need

Info for the original and enriched process model of IT support process in Figure 5-1. Here, we

presented the process model snapshot for IT support process, specifically highlighting the Change

Value derived activities (refer to Fig. 5-4).

As shown in Figure 5-4, the individual activity Change Value was replaced with more spe-

cific activities such as changed category, changed company name, and specific instances of changed

summary, each corresponding to extracted keyphrases.

As the information captured in comments is integrated into the model, it is possible to derive

insights as follows:

∙ The category was changed for a high percentage of tickets (as the relative frequency was

0.615), highlighting the need for a system to automatically assign a category based on the

content of the initial ticket, thus optimizing the time spent for category assignment.

∙ The summary was changed for various tickets, and some of the most frequent instances were
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Figure 5-4: A real example of discovered IT support process model for a large global IT
company, illustrating enrichment of model by integrating keyphrases extracted from the
comments for the Change Value activity. Some words are masked for confidentiality.

captured as keyphrases in our approach. Hence, we observed many states with a changed

summary (suffixed with specific terms), although they all indicated some change in the sum-

mary.

∙ The company name was changed for a small percentage of tickets, which usually happened

after the summary was changed in a specific manner. Therefore, the analysts could be

preempted in those instances to change the company name in parallel with the summary,

thus eliminating the delay.

We showed the process model discovered using structured logs and the enriched discovered

126



process model side-by-side to the manager. He acknowledged that the enriched model helped in

making effective process improvement decisions. One of the actionable insights he decided to take

forward was to design a robotic process automation solution for the automatic category assignment

to a ticket. This could not have been possible without integrating knowledge from the comments

into the discovered process model.

5.3.3 Evaluation of Keyphrase Extraction and Annotation

Establish the Ground Truth: To evaluate keyphrase extraction (as discussed in Section 5.2.3),

we established a ground truth for comments corresponding to the selected activities. Thus, we

needed to first manually identify a set of keyphrases for comments corresponding to selected ac-

tivities and annotate comments with the same. First, we identified the ticket attributes typically

changed (as part of Change Value activity) and information typically asked by the analysts (as part

of Need Info activity) on the basis of managers’ domain knowledge and manual inspection of the

comments. Manual inspection was performed by the author and her colleague for a disjoint set of

comments (random sample of around 25% comments for each) to identify lists of changed attributes

and asked information, respectively. Lists by both of them were compared to create a consolidated

list. Author and her colleague used different terms to represent the same information, which were

made consistent. Both of them identified the same list with a few exceptions (i.e., rarely occurring

content), which were resolved. The final list was verified with the manager. Each item in the list

was considered as a keyphrase for the respective data set.

Now that the list of ground truth keyphrases was identified, to establish the ground truth

, comments were annotated with keyphrases using a keyword-based dictionary [127]. A list of

keywords corresponding to each keyphrase was prepared iteratively, for example, the keyword

“summary” for the keyphrase “changed summary”. If the comment contained keywords, it was

annotated with the corresponding keyphrase. Thereafter, the author and her colleague of the

paper manually investigated the disjoint set of randomly selected comments to distill the wrongly

annotated comments. This process was repeated two to three times until very few/no updates were

made in the set of keywords.

As an example, ground truth keyphrases for Change Value and Need Info were {Changed Cate-

gory, Changed Sub-Category, Changed Severity, Changed Summary, Changed Support Contract},

and {mac pc, web browser, website directed, session id, detailed description, screen shot}, respec-
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tively.

Analysis of Results: Automatically extracted keyphrases can be structurally different from the

human-identified ones, although both represent the same topical information. To avoid spurious

penalty on the metrics, we took this into account by manually creating a mapping between the two.

Table 5.1 shows that the proposed approach performed with an accuracy of around 80% and had a

low hamming loss. High 𝐹1 measure ensured that the approach achieved a good balance between

precision and recall. Hence, the proposed approach efficiently derived an enriched event log across

for the given data set.

5.4 Threats to Validity

An evaluation performed in the case study involved a comparison against manually annotated

comments, which could be prone to human error. We believe that as two people (author and her

colleague) performed the annotation and verified it with the managers, the evaluation metrics were

close to reality.

Performance of the proposed keyphrase extraction annotation approach will vary in other con-

texts because it depends on text pre-processing and the value of input parameters, namely the

number of selected top keyphrases, whose optimal choice heavily depends on the data being used.

Further, the approach does not leverage semantics during keyphrase extraction and annotation,

which can be resolved using a semantic-based approach. Still we achieved high accuracy for the

presented case studies because the communication in business processes, such as IT support, soft-

ware issue resolution, and customer support, is quite formal. Specifically, the comments written

by support agents and developers have consistent terminology to represent the same information,

driven by the domain.

When the event log is enriched, an activity is replaced with a set of activities, each correspond-

ing to an extracted keyphrase. This can make the discovered process model look like spaghetti.

Therefore, it is recommended to enrich the event log based on the analysis to be performed and

limit the number of extracted keyphrases (top n) accordingly.
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5.5 Summary

Process mining techniques are activity focused and do not consider comments generated during

process execution. We presented a multistep approach to integrate hidden knowledge captured

in unstructured text, namely comments, into the discovered process model. This was achieved

by extracting keyphrases in an unsupervised manner and using them to annotate the comments

thus deriving enriched event logs. We observed that the keyphrase extraction and annotation

approach performed with an average accuracy of around 80% across different data sets. Further,

we discovered the process model using a derived enriched event log and highlighted the value of

enhanced process model in deriving actionable insights.

Our future plan is to extend the keyphrase extraction approach, such that the semantics is

leveraged, and compare it with the proposed approach to analyze whether the insights derived

from the discovered business processes are further enhanced.
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Chapter 6

Identifying Changes in Runtime

Behavior of a New Release to

Facilitate Anomaly Detection

Some code changes are made to resolve a ticket. This change can lead to anomalies, such as

regression bugs. We aimed to detect whether ticket resolution could cause some anomalous behavior,

so as to reduce the post-release bugs. It was one of the top five problems identified in the survey,

that is, “Enable early detection and prevention of defects instead of fixing them during the later

stage by understanding patterns of escaped defects” (refer to 𝑃2 in Table 2.1). We have already

seen the effect of applying process mining to the software repositories for improving the ticket

resolution process. Next, we investigated the usefulness of process mining to monitor the execution

behavior of a new release and thus detect inconsistencies introduced due to code changes.

We proposed an approach to automatically discover application Execution Behavior Models

(EBMs) for the deployed and the new version using the unstructured text of the execution logs,

that is, the print statements generated during the software execution. The differences between

the two models were identified and enriched such that spurious differences, for example, due to

logging statement modifications, are mitigated. The differences were visualized by identifying the

diff regions within the discovered behavior model. This allowed to efficiently analyze the differences

for various purposes such as anomaly detection, release decision making, and dynamic profiling.

To evaluate the proposed approach, we conducted a case study on Nutch, an open-source

application, and an industrial application. Nutch is an open-source web crawler software project.
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Its source code, commit history, and issues data are publicly accessible. This allowed us to control

the logging level, investigate code changes across the commit, and generate execution logs. It was

possible to generate execution logs by passing a set of URLs as input, thus making it feasible to

perform the case study. We discovered the EBMs for the two versions of applications and identified

the diff regions between them. By analyzing the regions, we detected bugs introduced in the new

versions of these applications. The bugs were reported and later fixed by the developers, thus,

confirming the effectiveness of our approach.

6.1 Need for Monitoring Changes in Runtime Behavior

To ensure a high-quality release, the upcoming release was staged in the production environment

using strategies, such as blue-green deployment [162], dark launches [163], canary release [162][164],

and shadow testing [165], and its performance was monitored [166][162] to quickly identify whether

it was misbehaving [165][164]. A vast amount of data were logged during the execution of the new

and previously deployed software versions. The existing monitoring systems kept track of suspicious

events in logs (e.g., errors, warning messages, and stack traces) and raised alerts. However, such

systems did not leverage the unstructured data captured in the execution logs to efficiently derive

and compare the dynamic behavior of the new and the previously deployed versions in a holistic

manner.

Execution logs have been extensively studied in contexts such as anomaly detection [167][168],

identification of software components [169], component behavior discovery [170], process mining

[171], behavioral differencing [172], failure diagnosis [173], fault localization [174], invariant inference

[175], and performance diagnosis [176][164].

Krka et al. [177] proposed algorithms, such as CONTRACTOR++, State-enhanced k-tails

(SEKT), and Trace-enhanced MTS inference (TEMI), that make use of inferred value-based pro-

gram invariants to aid the construction of an FSA from execution traces. Le et al. [178] proposed

SpecForge, a specification mining approach that synergizes many existing specification miners.

SpecForge decomposes FSAs that are inferred by existing miners into simple constraints (i.e.,

model fission). It then filters the outlier constraints and fuses the constraints back together into a

single FSA (i.e., model fusion). Le et al. [179] proposed Deep Specification Miner, an approach that

uses deep learning for mining FSA-based specifications. This approach uses test case generation

to create a set of execution traces for training a Recurrent Neural Network-Based Language Model
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(RNNLM). Although these approaches mine execution traces, the focus is on mining specifications

and not execution behavior models for runtime monitoring.

Jamrozik et al. [180] proposed an approach, Boxmate, to mine sandboxes and, thus, prevent

Android apps from suspicious behaviors. Boxmate uses an automated test case generation tool and

records the occurrences of sensitive API methods and input parameters. Le et al. [181] proposed an

approach to create more effective sandboxes that could distinguish malicious and benign activities

during the execution of Android apps. All these approaches use test case generation for creating

execution logs and do not focus on identifying runtime behavior when the code is changed across

the versions.

Goldstein et al. [172] analyzed system logs, automatically inferred Finite State Automata,

and compared the inferred behavior to the expected behavior. However, they worked on system

logs with predefined states, while we identified these states (templates) first. Cheng et al. [182]

proposed to extract the most discriminative subgraphs that contrasted the program flow of correct

and faulty execution. Fu et al. [176] derived a Finite State Automata to model the execution

path of the system and used it to detect anomalies in new log sequences. However, these were

supervised approaches assuming the presence of ground truth for correct and faulty executions to

learn a model. Nandi et al. [168] detected anomalies by mining the execution logs in distributed

environment; however, anomalies were detected within the same version, without differentiating

between the flow graphs of the two versions. Tarvo et al. [164] automatically compared the quality

of the new version with the deployed version using a set of performance metrics, such as CPU

utilization and logged errors however, they did not detect the differences in execution flow, which

was crucial for finding discrepancies. A set of techniques were used to compare multiple versions

of an application. Ramanathan et al. [183] considered program execution in terms of memory

reads and writes and detected the tests whose execution behavior was influenced by these changes.

Ghanavati et al. [184] compared the behavior of two software versions under the same unit and

integration tests. According to them, if a test failed in the new version, a set of suspicious code

change was reported. This approach worked best when comprehensive test suites were available.

In this chapter, we present a novel approach to automatically detect discrepancies in the fast-

evolving applications, which was achieved by identifying the differences in the runtime behavior of

the deployed and the new version, derived by mining the execution logs.

Real Example from Nutch: As part of an issue [NUTCH-1934]1, the class Fetcher counting

1https://issues.apache.org/jira/browse/NUTCH-1934
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Sequence of templates (T1103 –
T1109) disappears and a set of new
templates appears in new version.
Undiscovered bug: [Nutch-2345]

Figure 6-1: A real motivating ex-
ample capturing the differences be-
tween the execution behavior model
of the two versions for an open source
project, Nutch. Vertices added in
the new version are double encir-
cled; bold corresponds to edges, and
dashes to deleted vertices and edges.
The analysis of differences allowed us
to discover a bug that we reported as
NUTCH-2345. The bug was fixed by
the Nutch developers.

ca. 1600 lines of code was refactored to improve the modularity. We compared the version before

and after refactoring to identify differences between the two versions. We used Nutch to crawl a

set of URLs, thus generating the execution logs for both the versions. We mapped the generated

execution logs to templates (print statements) derived from the Nutch source code using string

matching. A subset of log lines was not mapped to any source code template (i.e., from the

third-party library) and clustered using a combination of approximate and weighted edit distance

clustering. An execution behavior model was discovered automatically for each of the versions

using the respective templatized execution logs. Each vertex in the model corresponded to a

unique template. Using our automated approach, many diff regions were detected between the two

discovered models.

Figure 6-1 presents one of the diff regions, that is, deletion of a set of vertices 𝑇1103–𝑇1109 (rep-

resented as dashes) from the class Fetcher.java and addition of new vertices 𝐸𝑋𝑇0–𝐸𝑋𝑇5 (double

circled) from apparently the third-party library (prefixed with EXT). We manually investigated

this diff region and found that the code fragment corresponding to templates 𝑇1103–𝑇1109 was

moved from Fetcher.java to FetchItemQueue.java2. Inspecting FetchItemQueue.java we found that

FetchItemQueues was used as logger instead of FetchItemQueue. Consequently, the log messages

from FetchItemQueue had a wrong class name, and thus were not mapped to the corresponding

source code logging statement and treated as log statements from the third-party library (𝐸𝑋𝑇0–

𝐸𝑋𝑇5).

2http://svn.apache.org/viewvc?view=revision&revision=1678281
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This issue was introduced in Nutch 1.11 and fixed after we reported it3 in Nutch 1.13. Using our

approach, the issue would have been detected in the version 1.11 itself. This highlights the potential

of our approach for discovering anomalies by analyzing automatically identified diff regions.

6.2 Proposed Approach

The proposed approach considered execution logs and source code for the deployed and the new

version as starting points. The approach leveraged execution logs without instrumenting the code

because instrumentation overhead was not possible in the fast-evolving production software [185].

Nevertheless, execution paths were successfully captured from the existing logs because in practice,

sufficient logging was done to facilitate runtime monitoring [186][187].

Our approach consisted three broad phases: template mining to map each line in the execu-

tion log to a unique template (Section 6.2.1), execution behavior model mining to derive execution

behavior models from the templatized logs and refine the model using a multimodal approach (Sec-

tion 6.2.2), and analysis of the model differences to identify the differences between the execution

behavior models and classify them into cohesive diff regions (Section 6.2.3).

6.2.1 Template Mining

A template is an abstraction of a logging statement in the source code consisting of a fixed part and

variable part (denoting parameters) [188][189]. Templates often manifest themselves as different

log messages because of the presence of parameters. Thus, identifying the templates from the

execution log messages has inherent challenges [168]. If no source code is available, templates can

be inferred by clustering log messages [190][168]. However, often log messages from different logging

statements are clustered together, resulting in inaccurate templates. As we had access to source

code, we extracted templates using regular expressions (Fig. 6-2).

Derive Templates from the Source Code: In this step, the print statements were identified

from the source code along with the class name and severity level (e.g., INFO, WARN, and DEBUG)

[186]. We searched for the logging statements in the source code using regular expressions with

some enhancements to identify ternary print statements and ignore commented logging statements

in the source code. As shown in Figure 6-2, the logging statement was parsed and represented as

3https://issues.apache.org/jira/browse/NUTCH-2345
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{"classname": "fetcher.FetcherThread", 
"TemplatePattern": "redirectCount=*", 
"TemplateID": T858, 
"loggerLevel": "debug"}

1. Source code 2. Extracted templates

{"classname": "fetcher.FetcherThread", 
"TemplatePattern": "fetching * (queue crawl 
delay= *ms)", 
"TemplateID": T857, 
"loggerLevel": "info"}

3. Execution logs and their template mappings

2017-02-20 20:22:31,551 INFO  fetcher.FetcherThread 
[FetcherThread] - fetching http://www.primedeep.com/wp-json/  
(queue crawl delay=5000ms)

2017-02-20 20:22:31,551 DEBUG fetcher.FetcherThread 
[FetcherThread] - redirectCount=0

2017-02-20 20:22:32,466 WARN  robots.SimpleRobotRulesParser 
[FetcherThread] - Problem processing robots.txt for 
http://www.tigerbeat6.com/products-page/transaction-results/ {"classname": "robots.SimpleRobotRulesParser", 

"TemplatePattern": "Problem processing 
robots.txt for *”, 
"TemplateID": T859, 
"loggerLevel": "warn"}

Log statement #1

Log statement #2

classNameloggerLeveltimeStamp

Mapped to Template T857

classNameloggerLeveltimeStamp

Mapped to Template T858

Not Mapped to any Template

4. Clustering of third party log 
statements for template generation

Figure 6-2: The source code (1) templates were extracted (2), and log lines were mapped to
them (3). Log lines from external libraries were clustered to create new templates (4).

a regular expression, which was then assigned a unique template ID. Class name and severity level

were also stored as additional information to disambiguate templates having an identical invariant

pattern but appearing in different classes of the code.

Although the complete source code was used to extract templates for the deployed source code

version, we only analyzed the diff between the two source code revisions to extract the templates

for the new version, as indeed, continuous deployment encourages incremental changes. Not only

was the extraction more efficient, it also ensured that the unchanged templates between the two

versions were represented by the same template ID. The main shortcoming of diff was that if

a logging statement was modified, it was represented in the diff as a combination of addition

and deletion, which was interpreted as the addition of a new template and deletion of the old

template. Thus, the two execution behavior models appeared different for the templates, which

were actually the same. As the modification of logging statement was frequent [186][187], we

addressed this shortcoming using a novel multimodal approach for template merging and model

refinement (Section 6.2.2).

Templatize Log Messages: In this step, a template ID was assigned to each log line appearing in

the execution logs by matching with templates obtained from the previous step. The class name and

severity level (if included as part of the log messages) were used as additional matching parameters

to reduce the search space for the match (Fig. 6-2). Although regular expression matching could

find the matching template, log lines matching multiple templates, templates with no fixed part,

and log lines generated by the third-party libraries required special treatment. If a log line matched

with more than one template, it was mapped to the most specific template, that is, the template

with the largest fixed part. If a class contained one logging statement without a constant part,
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then all the unmapped log lines from that class with the same logging level were mapped to it4.

Finally, log lines from external sources such as third-party libraries for which we had no access

to the source code, could not be templatized as explained earlier. These log lines were clustered

using a combination of approximate clustering [168] and weighted edit distance similarity [176].

Each cluster generated after the refinement was represented as a template and is assigned a unique

template ID. Thereafter, nontemplatized log lines were matched with the templates derived from

the clustering step, so that all the log lines were assigned a unique template ID.

6.2.2 Discovering Execution Behavior Model for Deployed and

New Version

Execution Behavior Model (EBM) is a graphical representation of the templatized execution logs

capturing the relationship between the templates. Each vertex in the model corresponded to a

unique template, and the edges represented the flow relationship between the templates. As the

template represented a logging statement from the code, 𝐸𝐵𝑀 captured a subset of possible code

flows.

The accuracy of identified diff regions directly depends on the accuracy of the 𝐸𝐵𝑀 mining,

which, in turn, depends on the accuracy of the template mining. As discussed in Section 6.2.1, the

execution logs were templatized with high precision using the source code. However, for log lines be-

ing generated from the third-party libraries, we had to resort to the clustering-based technique with

inherent limitations. This limited the template mining accuracy and, consequently, the accuracy

of 𝐸𝐵𝑀 mining. This was even more apparent in the new version because only a limited number

of logs were available, hindering accurate mining [168]. Further, inconsistency in the templates

because of the modified log statements in the source code being recorded as new templates led to

many spurious differences between the compared models, thus making the diff analysis practically

less effective. To overcome this problem, we proposed an iterative 𝐸𝐵𝑀 refinement strategy using

multimodal signals, that is, text and vicinity (i.e., predecessors and successors in 𝐸𝐵𝑀) of the

template.

Iterative execution behavior model refinement: We derived execution behavior model for

the deployed (𝐸𝐵𝑀𝑑) and the new version (𝐸𝐵𝑀𝑛) using corresponding templatized execution

logs. We compared 𝐸𝐵𝑀𝑑 and 𝐸𝐵𝑀𝑛 to identify the vertices which are present in 𝐸𝐵𝑀𝑛 but not

4The case with multiple such statements is very rare and hence does not affect our approach.
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T6 T’4 T5
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T0T7

T6 T4 T5

T2

1. Discovered EBMd 2. Discovered EBMn 3. After Iteration 1: EBMn

textsim(T4, T’4) > Sth
vicsim(T4, T’4) < Vth

textsim(T3, T’3) > Sth
vicsim(T3, T’3) < Vth

textsim(T2, T’2) > Sth
vicsim(T2, T’2) > Vth

4. After Iteration 2: 
Refined EBMn

T’3

T1 T1 T1

textsim(T3, T’3) > Sth
vicsim(T3, T’3) < Vth

textsim(T4, T’4) > Sth
vicsim(T4, T’4) > Vth

Figure 6-3: Stepwise illustration of the multimodal approach for Execution Behavior Model
(EBM) refinement. EBM𝑑 is for the deployed version, and EBM𝑛 is for the new version;
textsim captures the text similarity, and vicsim captures the vicinity similarity.

in 𝐸𝐵𝑀𝑑 (i.e., △𝑇𝑎𝑑𝑑) and vice-versa (i.e., △𝑇𝑑𝑒𝑙). It is possible that the vertex from the △𝑇𝑎𝑑𝑑

set is actually the same as the vertex from the △𝑇𝑑𝑒𝑙 set, but captured as a different template as

discussed earlier. We identified and resolved such cases using the proposed multimodal approach,

thus reducing the spurious diff and making the comparison more effective.

One of the multimodal signals that we used was the textual similarity between the templates

from △𝑇𝑑𝑒𝑙 and △𝑇𝑎𝑑𝑑. If there were 𝑚 templates in △𝑇𝑑𝑒𝑙 and 𝑛 templates in △𝑇𝑎𝑑𝑑, then the

similarity was calculated between 𝑚×𝑛 pairs. The pairs with textual similarity above a threshold

were captured as potential merge candidates. We did not merge the templates simply based on text

similarity because two textually similar templates corresponding to different logging statements in

the code could exist. Hence, to improve the precision, we evaluated the similarity for one more

modality, that is, vicinity similarity, where vicinity is the set of predecessors and successors. If the

vicinity similarity was above a threshold, the templates were marked as identical. Thresholds for

textual similarity and vicinity similarity could be selected based on grid search and fine-tuned to

project requirements [168].

We continued the process iteratively, with each step leading to a more refined 𝐸𝐵𝑀𝑛. With

every iteration, some of the vertices were marked as identical, which, in turn, could change the

value of vicinity similarity for other candidate pairs. We stopped the iterations when no more

candidate pairs could be merged and the 𝐸𝐵𝑀𝑛 output of subsequent steps no longer changed.

Example 6.2.1. Consider the EBMs shown in Figure 6-3. By comparing 𝐸𝐵𝑀𝑑 and 𝐸𝐵𝑀𝑛,

we observed that △𝑇𝑑𝑒𝑙 = {𝑇2, 𝑇3, 𝑇4} and △𝑇𝑎𝑑𝑑 = {𝑇 ′
2, 𝑇 ′

3, 𝑇 ′
4}. We calculated text similarity for

all the nine pairs and found the potentially similar candidate set, 𝐶 = {(𝑇2, 𝑇 ′
2), (𝑇3, 𝑇 ′

3), (𝑇4, 𝑇 ′
4)}.
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Vicinity similarity was checked for all the candidates, and in the first iteration vicinity similarity

was above the threshold only for one pair, (𝑇2, 𝑇 ′
2), which was marked as identical and removed from

𝐶. In the next iteration, the remaining pairs from 𝐶 were analyzed for the vicinity similarity, which

was found to be greater than the threshold for (𝑇4, 𝑇 ′
4), which was again marked as identical and

removed from 𝐶. Only one pair, (𝑇3, 𝑇 ′
3) was not marked as same because its vicinity similarity was

below threshold, even though the textual similarity was high. Consequently, diff set after 𝐸𝐵𝑀𝑛

refinement was reduced to △𝑇𝑎𝑑𝑑 = {𝑇 ′
3} and △𝑇𝑑𝑒𝑙 = {𝑇3}.

6.2.3 Analyzing Differences between Execution Behavior Models

Amar et al. [191] proposed an approach for log differencing using finite-state models. They gener-

ated concise models to describe the execution and highlight the differences using two algorithms,

2KDiff and nKDiff. The focus was on identifying sequences of length k that belonged to one log

(or set of logs) but not to the other. However, we aimed to identify the differences across two

execution behavior models, which represents a consolidated view for many logs, and present them

in a cohesive region for efficient analysis.

As EBMs were graphs, identifying the differences between them could be seen as the graph

isomorphism problem [192], known to be in NP. However, as we ensured the consistency in the

template ID across the two models, the comparison of the two models was simplified. The refined

models were compared to identify the following differences: sets of vertices, (△diff𝑣) and edges,

(△diff𝑒) that were added/deleted, as well as the set of vertices for which the relative frequency

of outgoing transitions had changed (△diff𝑑𝑖𝑠𝑡 in 𝐸𝐵𝑀𝑛) compared with 𝐸𝐵𝑀𝑑. For efficient

follow-up analysis, we grouped the identified differences into cohesive regions such that the related

differences were investigated as a single unit.

Example 6.2.2. Deletion of T1103–T1109 and the corresponding edges, and addition of EXT0–

EXT5 and the corresponding edges in Figure 6-1 were grouped together.

Vertex-anchored region: Intuitively, we wanted to find the maximum point from which the

difference in execution behaviors was observed and the minimum point up to which there were

differences in the execution behavior. It was highly likely that the differences with same maximum

point were caused due to modifications in the same code, thus they should be investigated as a

single unit.
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Figure 6-4: Illustration showing two vertex-anchored regions (different shades of yellow) and
one edge between the unchanged vertices (blue). Blue pointers correspond to backtracking,
and green pointers depict forward tracking.

A vertex, 𝑣𝑖 was randomly selected from △diff𝑣 as a seed to detect the region. We back-

traversed the graph till an unchanged ancestor (i.e., vertex common between the two models) was

detected along all the paths to 𝑣𝑖. All the vertices and edges along the path (including unchanged

ancestor) were marked as part of the region. For all marked vertices, all the outgoing branches were

traversed and marked till an unchanged child vertex (i.e., vertex common between the two models)

was detected. The unchanged child vertex was not included in the region because the boundary of

the region was defined till the last difference in the included path. Effectively, a region covering

a set of vertices and edges was identified. The process was repeated as long as there remained

unmarked vertices in △diff𝑣. At the end of this step, all vertices from △diff𝑣 and some edges

from △diff𝑒 were marked as a part of the same region. We called these regions as vertex anchored

regions.

Example 6.2.3. Consider Figure 6-4 where △diff𝑣 = {𝑇0, 𝑇2, 𝑇3, 𝑇4, 𝑇6, 𝑇7, 𝑇8, 𝑇10} and △diff𝑒 =

{(𝑇0, 𝑇11), (𝑇1, 𝑇0), (𝑇1, 𝑇4), (𝑇1, 𝑇3), (𝑇1, 𝑇2), (𝑇1, 𝑇6), (𝑇4, 𝑇5), (𝑇3, 𝑇5), (𝑇2, 𝑇5), (𝑇11, 𝑇6), (𝑇6, 𝑇7),

(𝑇7, 𝑇11), (𝑇10, 𝑇11), (𝑇10, 𝑇9), (𝑇9, 𝑇10), (𝑇9, 𝑇8), (𝑇8, 𝑇9), (𝑇8, 𝑇11), (𝑇5, 𝑇1)}. We chose 𝑇7 as the first

seed and back-traversed its incoming path (blue pointers) up to the maximum unchanged vertices,

that is, {𝑇1, 𝑇11}, marking vertices {𝑇7, 𝑇6, 𝑇1, 𝑇11} and edges {(𝑇7, 𝑇6), (𝑇6, 𝑇1), (𝑇6, 𝑇11)}. Next,

the outgoing branches were traversed (green pointers) till unchanged vertex was detected and the

corresponding vertices were marked. As a result, the light-yellow region was created consisting of

𝑉𝑟1 = {𝑇0, 𝑇2, 𝑇3, 𝑇4, 𝑇6, 𝑇7} and 𝐸𝑟1 = {(𝑇0, 𝑇11), (𝑇1, 𝑇0), (𝑇1, 𝑇4), (𝑇1, 𝑇3), (𝑇1, 𝑇2), (𝑇1, 𝑇6), (𝑇4, 𝑇5),

(𝑇3, 𝑇5), (𝑇2, 𝑇5), (𝑇11, 𝑇6), (𝑇6, 𝑇7), (𝑇7, 𝑇11), (𝑇5, 𝑇1)} from diff𝑣 and diff𝑒, respectively. For the
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next iteration, we chose 𝑇8 as a seed from the set of uncovered vertices in diff𝑣 and repeated

the process to identify another region. The second region became 𝑉𝑟2 = {𝑇8, 𝑇9, 𝑇10} and 𝐸𝑟2 =

{(𝑇10, 𝑇11), (𝑇10, 𝑇9), (𝑇9, 𝑇10), (𝑇9, 𝑇8), (𝑇8, 𝑇9), (𝑇8, 𝑇11)}. Hence, all the vertices from diff𝑣 and a

subset of diff𝑒 were grouped in one of the cohesive regions.

Edge-anchored region: Not all edges from△diff𝑒 belonged to one of the vertex-anchored regions.

These were mainly the edges added/deleted between unchanged vertices and should be analyzed

separately. We referred to each of these edges along with its vertices as an edge-anchored region.

Example 6.2.4. After detecting the vertex-anchored regions in Figure 6-4, only one edge in △diff𝑒

was unmarked. The only edge-anchored region was hence 𝑉𝑟3 = {𝑇1, 𝑇5} and 𝐸𝑟3 = {(𝑇5, 𝑇1)}.

Distribution-anchored region: Apart from the aforementioned two cases of structural changes

(addition or deletion of vertex or edge) in 𝐸𝐵𝑀 , we investigated the vertices common in both

the versions of the model to detect the deviations in changes in the relative frequency of outgoing

transitions. To capture the distribution change, for a given vertex 𝑣 and its outgoing transitions

common between the two models, we computed |𝑓𝑑(𝑖)−𝑓𝑛(𝑖)|
𝑓𝑑(𝑖) , where 𝑓𝑑(𝑖) (𝑓𝑛(𝑖)) is a relative fre-

quency of transition 𝑖 in 𝐸𝐵𝑀𝑑 (𝐸𝐵𝑀𝑛) among the outgoing transitions of 𝑣 common between the

two models. If the metric value was above the threshold for at least one transition from the vertex

𝑣, it was marked as the distribution-anchored region. Threshold needed to be decided manually

based on the project requirements such that minor changes were discounted (i.e., not considered

as part of the differences) and major changes were marked in the differences.

6.3 Case Studies

We performed case studies on two different applications: (1) Nutch5, an open-source web crawler

and (2) an industrial log analytics application. We have already shown some initial results on

the Nutch project in Section 6.1 and discussed the other findings. Also, all the artifacts such

as execution logs, templatized logs, execution behavior model and diff files were made publicly

available for the reproducibility of the results6. Details of the industrial application could not

be divulged for confidentiality reasons. We selected these applications primarily because of the

availability of the source code and historical data on bugs and the corresponding fixes, as well as
5http://nutch.apache.org/
6https://github.com/Mining-multiple-repos-data/Nutch-results
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Table 6.1: Properties of the two versions of Nutch application

Attribute Nutch
Ver 1 Ver 2

Classes 415 420
Total LOC 67658 67891
Logging statements in src 1098 1097
Total lines in execution log (approx) 94137 125695
Total [Info, Debug] 19K,73K 26K,98K
Total [Error,Warn] 408,178 354,604
Vertices in model 106 104
Edges in model 328 310

frequently occurring incremental changes in these applications. Execution logs for these projects

were not available; therefore, we used a custom load generator to generate logs for different source

code versions.

6.3.1 Open-Source Project: Nutch

Two Nutch versions were used: (1) before the commit for [NUTCH-1934], henceforth called version

1 (deployed/prod version) and (2) after the commit for [NUTCH-1934], henceforth called version

2 (new version). This commit was considered a major change as a big class Fetcher.java (ca. 1600

lines of code) was refactored into six classes. Table 6.1 presents the details of the two Nutch versions.

We derived the templates from the source code for version 1, henceforth called templates𝑣1. To

derive the templates for version 2, templates𝑣2, 46 templates were deleted, and 47 templates are

added to templates𝑣1 in accordance with the code diff (here, git-diff ) between the two code versions.

We generated execution logs for both the versions by crawling same URLs (i.e., mimic prod). This

means that here the custom load was a manually created list of URLs (around 1000), which was

passed as input. We observed that the number of log lines generated for version 1 was less than

that for version 2 (cf. Table 6.1). The execution logs for version 1 and version 2 were templatized

using templates𝑣1 and templates𝑣2, respectively. Around 12% of log lines were not templatized,

and hence were clustered. Therefore, 80 clusters were obtained. The clusters were further refined

and grouped using weighted edit distance, reducing their number to 26. Nontemplatized log lines

were matched with the templates generated after clustering and every line in the execution log was

templatized for both the versions. We discovered the execution behavior model (EBM) for both
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the versions, 𝐸𝐵𝑀1 and 𝐸𝐵𝑀2, and refined them using a multimodal approach.

The behavior model showed that there were 53 added and 47 deleted vertices in 𝐸𝐵𝑀2 as

compared with 𝐸𝐵𝑀1. For every pair of the added and deleted vertices, text similarity was

calculated from the source code. The text similarity was found to be above a threshold (here,

0.8) for 36 out of 2491 pairs, and the corresponding vicinity was compared in 𝐸𝐵𝑀1 and 𝐸𝐵𝑀2.

Vicinity similarity was also found to be above a threshold (i.e., 0.5) for all the 36 candidate pairs.

Thus, these vertices were marked to be the same templates across the two EBMs. For better

understanding, diff refinements file was made publicly available at the 𝑙𝑖𝑛𝑘8. As a result, all

the templates which are captured as a new template because of refactoring got mapped to the

corresponding old templates, reducing the number of differences significantly. Refined 𝐸𝐵𝑀2 was

compared with 𝐸𝐵𝑀1 to identify and analyze the differences. The final refined model with diffs

was made publicly available6 and included in the Appendix C.

We observed several differences that were grouped as cohesive regions using the approach dis-

cussed in Section 6.2.3.

We identified one region, which is explained in Section 6.1. In the additional region, we observed

(1) deletion of vertex corresponding to template “Using queue mode : byHost” (though present in

source code of both the versions) and (2) significant change in the distribution of a vertex 𝑇1135,

such that the edge 𝑇1135 → 𝑇1131 traversed only twice in 𝐸𝐵𝑀1 but 601 times in 𝐸𝐵𝑀2.

Both observations were related to FetcherThread.java, which was investigated manually, and a bug

was identified in the way URLs are redirected. Instead of following the correct redirect link, the

code followed the same link over and over again. After the maximum number of retries exceeded,

further processing of the URL stopped with the message 𝑇1131 (“- redirect count exceeded *”), thus

increasing the frequency of this edge traversal. This bug has already been reported as NUTCH-

21247 and attributed to patch commit we are analyzed. This validated the findings of our approach

and highlighted its usefulness. Therefore, using our approach we not only detected differences but

also provided the context to derive actionable insights.

6.3.2 An Industrial Application

The 𝐸𝐵𝑀 generated automatically by our code is shown in Figure 6-5 with annotations. Gray

denoted the part which is common in 𝐸𝐵𝑀𝑑 and 𝐸𝐵𝑀𝑛, the dashed denoted the part present

7https://issues.apache.org/jira/browse/NUTCH-2124
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Figure 6-5: Annotated EBM highlighting the regions of diff for internal analytics applica-
tion. Yellow regions are identified as evolutionary change and the red ones correspond to
an anomaly. The gray part is common in 𝐸𝐵𝑀𝑑 and 𝐸𝐵𝑀𝑛, the dashed part is present
only in 𝐸𝐵𝑀𝑑 but not in 𝐸𝐵𝑀𝑛, and the bold edges/double encircled parts are present in
𝐸𝐵𝑀𝑛 but not in 𝐸𝐵𝑀𝑑

only in 𝐸𝐵𝑀𝑑 but not in 𝐸𝐵𝑀𝑛, and the bold edges/double encircled corresponded to the part

present in 𝐸𝐵𝑀𝑛 but not in 𝐸𝐵𝑀𝑑. We selected two code revisions (referred to as 𝑣1 and 𝑣2) of the

project such that it captured different kinds of code changes possible in the software development

cycle. As shown in the Figure 6-5, our approach detected six different regions of change between

the two revisions, which we explain as follows.

Region 1: The 𝑇58 template was present in both the source code versions but was not observed

in 𝐸𝐵𝑀𝑛. Manual inspection of the code and commit history revealed it to be actually a bug

caused due to faulty regular expression match and hence one conditional statement was skipped.

Region 2: A shift in distribution between edges (𝐸𝑋𝑇0, 𝑇1) and (𝐸𝑋𝑇0, 𝑇2), that is, increase

in transition to 𝑇1 by a factor of 8. Manual inspection revealed that the cause of this anomaly was

a wrong Boolean condition check, which caused flipping of the distribution between two conditional

statements.
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Region 3: Many new nodes appeared in 𝐸𝐵𝑀𝑛 because a new Java class was added (identified

in a manual investigation), which got invoked in the new version, that is, this was an evolutionary

design change. Addition of 𝑇0, however, was not exactly related to this change. It was from the

class that invoked the new feature but was added in Region 3 alongside the new class because of

its close proximity.

Region 4: It had only one change, namely, the addition of edge 𝑇50→ 𝑇78 and an accompanying

decrease in the frequency of 𝑇76→ 𝑇78. Manual investigation highlighted that 𝑇78 corresponded

to a new exception check added in the class containing 𝑇50. Thus, whatever was not caught at

𝑇50 level was caught at 𝑇76.

Region 5: The main change was the addition of node 𝑇40 and disappearance of nodes 𝑇44 and

𝑇45. Both 𝑇44 and 𝑇45 were exception nodes existing in both code revisions, while 𝑇40 was a

new node. Manual inspection revealed that this change was actually a result of bug fix, that is, for

ArrayOutOfBounds exception. This validated that the bug fix worked as intended.

Region 6: Two new nodes appeared in 𝐸𝐵𝑀𝑛, and an investigation of the revision history

revealed that a new function was added with two prints, which was invoked just after 𝑇51 in the

code, causing an evolutionary change.

To summarize, our approach successfully detected all seven regions of the code change between the

two code revisions. It coalesced two of the regions (in Region 3), but did not affect the usability

of our approach as these regions were in proximity. Manual investigation of diff regions in 𝐸𝐵𝑀

highlighted regression bugs and validated the evolutionary changes.

6.4 Threats to Validity

The performance of the approach depends on the pervasiveness of logging; hence, if logging state-

ments are less in number, then it may not be possible to derive useful inferences. However, given

that logs are the primary source for problem diagnosis, sufficient logging statements are written in

the software [186].

We conducted experiments on one open-source project and one proprietary project to illustrate

the effectiveness of the approach. However, both were Java-based projects using Log4j library for

logging; thus, they were very similar in terms of logging practice. Although the approach does not
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make any project-specific assumptions, it is possible that the performance can vary for different

project characteristics. The accuracy of the multimodal approach depends on the thresholds and

thus can vary across projects.

The approach assumed the presence of an identifier (i.e., thread ID) to capture the trace for

execution. As the thread ID was often present in the execution logs [193], it was fair to make

this assumption. When the identifier for execution was not present, the execution behavior model

could be mined using other techniques [168]. To keep our approach language independent and

lightweight, we did not use static analysis techniques. Also, static analysis does not capture the

complete reality of execution behavior that gets influenced by production configuration.

6.5 Summary

We presented an approach to efficiently highlight the differences in the execution (runtime) behavior

caused due to code changes in evolving applications. We automatically discovered the runtime

behavior model for the deployed and the new version by mining the execution logs. The models

were compared to automatically identify the differences presented as cohesive diff regions. As we

used a graphical representation, we not only identified diff regions but also the context to facilitate

in-depth analysis.

Our preliminary evaluation on the open-source project Nutch and industrial log analytics ap-

plication illustrated the effectiveness of the approach. Using our approach, we were able to detect

multiple bugs introduced in the new version for both the applications. Following the analysis, we

found that some of the detected bugs were already reported in their issue tracking system; therefore,

we reported the remaining ones that were later fixed by the developers.

We mined the differences between the execution behavior models of the two versions but did

not associate the differences with the change type, for example, bug or other evolutionary change

(such as feature addition/deletion). This kind of classification not only helps in the quick resolution

of bugs but also acts as an additional check to see whether all the release items have been properly

taken care of before signing off on deployment. As part of the future work, identified diff regions

can be automatically classified as anomaly, thus helping developers drill down to the root cause

commit(s) using revision history.
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Chapter 7

Conclusion

Software maintenance is a complex phase of software project involving multiple activities and

consumes a significant portion of the total software project cost. Ticket resolution is an important

part of software maintenance which is the focus of this thesis. Given its importance and the cost

involved, an organization defines how ticket resolution should be carried out. It is known that the

performance of an organization can be improved by improving the process. Therefore, the ticket

resolution process needs to be continuously improved to make it more efficient.

A large volume of data is generated during ticket resolution, which is archived in software repos-

itories. The data is mined to uncover interesting insights and actionable information for effective

performance improvement decisions. The existing studies facilitate a variety of tasks during ticket

resolution by applying various data mining techniques on software repositories; however, the focus

in these studies was not end-to-end process analysis. In this thesis we analyzed ticket resolution

using process mining techniques and derived insights to support efficient process improvement.

First, we identified the software process-related challenges, which can be addressed using process

mining. We conducted qualitative surveys and interviews of more than 40 managers in a large global

IT company. We identified 30 challenges, out of which more than 10 challenges corresponded to

ticket resolution from the software maintenance phase. We attempted to address a few of the

identified challenges pertaining to the software maintenance ticket resolution process.

One of the challenges identified from the survey was the need to analyze the data generated

during the ticket resolution process to capture process reality and identify improvement opportuni-

ties. We proposed a framework for analyzing software repositories for ticket resolution from diverse

perspectives, by applying process mining. The framework consists of three main steps: (1) data ex-
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traction from multiple repositories and integration, (2) transformation of the data to an event log,

and (3) multiperspective process mining from the transformed event log. Using multiperspective

process mining, we discovered a process model that captured the control flow, timing and frequency

information about events. We then studied the inefficiencies, such as self-loops, back-forth, ticket

reopening, timing issues, delays due to user input requests, and effort consumption. We also ana-

lyzed the degree of conformance between the designed and the runtime (discovered) process model.

We conducted a series of case studies on the open-source Firefox browser and Core project, open-

source Google Chromium project, and the IT support process of a large global IT company. The

data on tickets was obtained from the Issue Tracking System (ITS) for the project (e.g. Bugzilla).

We also used repositories for the Peer Code Review (PCR) system and Version Control System

(VCS), where available. For each of the projects, a separate ticket resolution process was discovered

and analyzed leading to diverse observations. For example, in Google Chrome, we observed that

for around 14% cases, ticket was instantiated in ITS after patch submission in PCR or commit

in VCS (ideally, for traceability reasons, a ticket’s life cycle should start from ticket reporting in

ITS followed by patch submission in PCR and commit in VCS). Moreover, for these tickets the

number of patch revisions, and hence the resolution time, was higher. In Firefox and Core, we

found that a significant percentage of tickets underwent multiple developer reassignment causing

delays in resolution. Also, we identified two categories of tickets (wontfix and worksforme) that

consumed the maximum ticket resolution effort. We noted that several tickets in these categories

got reopened, signaling the need for improvement in identifying such tickets.

For the IT support process of the large global IT company, we found that around 57% of the

tickets had user input requests in the life cycle, causing user-experienced resolution time to be

almost double the measured service resolution time. We observed that user input requests were

broadly of two types: real, seeking information from the user to process the ticket; and tactical,

when no information was asked but the user input request was raised merely to pause the service-

level clock. We proposed a machine learning-based system that preempts a user at the time of ticket

submission to provide additional information that the analyst is likely to ask, thus reducing real

user input requests. We also proposed a rule-based detection system to identify tactical user input

requests. This system which predicted the information needs, exhibited an average accuracy of

94%−99% across five cross-validations, while the traditional approaches, such as logistic regression

and naive Bayes, exhibited an accuracy in the range of 50%−60%. The detection system identified

around 15% of the total user input requests as tactical with a high precision. Together the proposed
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preemptive and detection systems could efficiently bring down the number of user input requests

and improve the user-experienced resolution time.

Process mining uses largely structured data, such as event logs, and does not leverage the rich

information from unstructured data, such as comments and emails. From the survey, we identified

the need for granular process analysis to support efficient process improvement. Therefore, we

explored unstructured data generated during process execution to capture the underlying process

interactions to ensure effective process improvement decisions. To achieve this, we extracted topical

phrases (keyphrases) from the unstructured data using an unsupervised graph-based approach. The

keyphrases were then integrated into the event log, which then got reflected in the discovered process

model. This provided insights that could not be obtained solely from structured data. To evaluate

the usefulness of this approach, we conducted a case study on the ticket data of the large global IT

company. Our approach extracted keyphrases from the comments associated with the tickets with

an average accuracy of around 80% across different data sets. This enabled us to succinctly capture

the additional information in the comments regarding issues influencing the ticket resolution process

and often causing delays, such as extra information required, priority, and severity. This allowed

the managers to make decisions, such as implement a bot to capture the information or add a

mandatory field in the initial ticket template, thus reducing the delays incurred while waiting for

information.

Some code changes are made to resolve tickets which can lead to an anomaly such as regression

bugs. We aimed to detect whether ticket resolution caused some anomalous behavior, so as to

reduce the post-release bugs, one of the important challenges identified from the survey. To achieve

this, we proposed an approach to discover the execution behavior of the deployed and the new

versions using execution logs (which contain outputs of all the print statements along with related

information such as time, thread ID, statement number, and so on). Differences between the two

models were then identified and refined, such that spurious differences due to logging statement

modifications were eliminated. The differences were presented graphically as regions within the

discovered behavior model. This allowed programmers to identify anomalous behavior changes

that were not consistent with code changes, thereby identifying potential bugs that might have

been introduced during the code change. To evaluate the proposed approach, we conducted a case

study on Nutch (an open-source application), and an industrial application. We discovered the

execution behavior models for the two application versions and identified the differences between

them. By manually analyzing the regions, we were able to detect bugs introduced in the new
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versions of these applications. The bugs were reported and later fixed by the developers, thus,

confirming the effectiveness of our approach.

In this thesis, we explored the potential of applying process mining using various data sources to

improve various aspects of the ticket resolution process, an important part of software maintenance.

We applied the proposed approaches to a series of case studies on data sets of commercial and open-

source projects. Although we believe that the case studies are representative, the proposed approach

should be applied to different data sets to establish generalizability. To support the reproducibility

of our case studies, a large part of the data (with the data from the industrial partners being the

only exception) has been made publicly available [120].

We believe that leveraging diverse data sources and applying analytics intelligently have more

potential for process improvement. Information from other sources such as emails, chat logs,

and screen recordings can further enhance process improvement. Such analyses usually focus on

identifying the inefficiencies. However, we observed in this thesis that they also led to automation

opportunities, making the process more efficient.
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Appendix A

Survey Responses: Identifying

Opportunities for Process

Improvement

Problem statements listed in Table 2.1 are derived to represent multiple items collected from the

first survey. Each statement has task (or actual problem) as the first component followed by

cause and benefit as the second component. Original detailed items for every problem statement

are presented here for better understanding - the text is literally taken from the survey responses.

Statements with [𝑀 ] belong to the maintenance phase; the italicized ones are for the ticket resolu-

tion process; and ♣ are the ones we attempted to address.

1. [𝑀 ] ♣ Identify BOTTLENECKS and inefficiencies causing delay in ticket resolution process

to take remedial actions and have better estimation in future. [Chapter 3]

∙ Estimate Vs Actuals: always an issue. Even though the delivery/release of products

happens on time but the development team has to slog every time. Better time estima-

tion based on historical data and understanding of bottlencks to take remedial actions

in future.

∙ Team is spending lot of time with Client s on reviews and finalizing design, code, model

etc. More often than not review effort is 2-3 times more what was originally estimated.

Can we review the different artifacts, process followed (including setting up meetings,

follow-ups etc.) and see where we are lacking?
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∙ Where most of the effort are being spent by the team? Is it on solving bugs, or clarifi-

cation of bugs with the users by having communication, reporting the bugs?

∙ Where most of the effort are being spent by the team? Is it on solving bugs, or clarifi-

cation of bugs with the users by having communication, reporting the bugs?

∙ Why high time for resolution of issues.

∙ Though we have metrics to estimate time, they are not really helpful as the learning

curve is not taken into consideration. Therefore time not met and always a risk. Identify

bottlenecks more objectively because of which reality overshoots the estimation.

∙ If we can have visibility to the instances where how much time and elapse happening

at each activity. Simplify to extent where is is generic and configurable.

∙ Bottleneck identification in process is manual after every release. It is ok with small

team and projects, need automation for larger projects

2. [𝑀 ] ♣ Enable early detection and PREVENTION OF DEFECTS instead of fixing them

during the later stage by understanding patterns of escaped defects. [Chapter 6]

∙ How to make sure that the whole rework thing can be minimized because of reasons like

requirement change, misunderstanding, misallocation, early detection of defects etc.

∙ Understand pattern of escaped issues by the team.

∙ Assuming requirements are complete. Integrate testing with development. Understand

the problem and if it can be handed by process so that we deliver the system with 0

defect.

∙ Look at ongoing logs to prevent defects/responses rather than fixing them

∙ Systematic and timely handling of issues which originate due to missing requirement or

missed out scope, decisions, approval etc.

∙ Understand the production defects and process of their inception, resolution

∙ From Dev Complete -> QA complete, find escaped defects like normal flow or alternate

flow. Then alter the process to include a new line also to take care of them

∙ Can we improve code review and ensure that it is done more efficiently. How to reduce

rework caused because of delayed defect detection? Identify the efficient set of process
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practices to improve code review. May be redesign checklist based on learning from

current defects.

∙ Though we have ticket tracking tools in place, we have to maintain the root causes and

solutions separately. This becomes very inconsistent as the resources keep on changing.

If PM can pull the log, analyse and the problem if it is recurrent, provide its stats, root

cause, best solution reco, prevention.

3. Avoid putting efforts on LESS SIGNIFICANT ACTIVITIES by identifying redundant or

unnecessary steps of process.

∙ Capture unique cases. Do cost benefit analysis to understand from various variants

which are the best ones with the right balance of resources deployed and outcome.

∙ Identify time consuming but unnecessary processes etc.

∙ Identify redundant activities which cause delay. Some sort of cost benefit analysis. Few

activities are done just as part of process where they hardly contribute towards the

overall outcome. Identify those activities from history variants and refine the process.

∙ Can I put a check to find the redundant parts of process to optimize lifecycle and focus

on critical activities. Attribute Scope and Quality to all the activities and find which

activities can we cut with the minimal impact.

∙ Models like waterfall and any other has multiple phases defined in standard process.

However, can we adapt the process automatically for changing project requirements.

E.g. if the project is small and similar to previous project we can say that design phase

didn’t add much value therefore it is not required

4. Automatic ADAPTATION OF PROCESS according to different project specifications that

is, design process based on knowledge of similar successful projects instead of selecting process

only on the basis of experience.

∙ The base requirements keep changing. I wish to have more clear understanding of why

we do what we are doing. I mean process justification to have clear understanding on

correlation with the overall outcome.

∙ Adherence to process is not high. Conviction that if I follow theprocess, it will help is

missing.
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∙ Models like waterfall and any other has multiple phases defined in standard process.

However, can we adapt the process automatically for changing project requirements.

E.g. if the project is small and similar to previous project we can say that design phase

didn’t add much value therefore it is not required

5. [𝑀 ] Inspect REOPENED issues to identify the root cause and recommend verification for

future issues based on learning from issues reopened in the past. [Chapter 3]

∙ Tracking of defects that were reopened after it has passed verification

∙ Understand the reopen pattern with the cause to solve. E.g. do we need to have more

test cases or its with specific people or component. Learn it and preempt.

∙ If we can know that there is set of issues which tend to be reopened so that we can

make verification mandatory. Features like time, effort, type of interaction, criticality,

priority can also be considered.

∙ Identify the people whose cases are retested. Point anomalies and patterns to identify

developers.

∙ How do you manage historical data to improve process. Preempt iisues during mainte-

nance. It is not possible to verify resolution of all the issues, may be based on history

if we can preempt and say this type of issue is more likely to get reopened or cause

regression defects therefore, verify that issue.

∙ How to make sure that the whole rework thing can be minimized because of reasons like

requirement change, misunderstanding, misallocation, early detection of defects etc.

6. [𝑀 ] Need for efficient TASK ALLOCATION mechanism by considering individuals’ skills,

interests, and expertise as well as team compatibility for better utilization of resources.

∙ Maintenance Phase: Lack of experience in support related tasks. Effective Knowledge

Management mechanism. Lights on coverage.

∙ Streamline token Allocation mechanism

∙ Assign task more efficiently by analysing their comfort in terms of team compatibility

and expertise.

∙ Can we optimize testing team size and resources by some new processes.
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∙ Assignment to right technically skilled professionals.

∙ Just like traveling salesman problem is shown alternative routes in case of traffic block-

age, in case of a project roadblock, alternative resource allocation should be shown.

∙ Resource - skill set mapping for efficient task allocation spc. For large teams

∙ No efficient mapping of skills vs job done sometimes

∙ Staffing and estimates not done accurately becoz of which project lands in red

∙ Efficient task allocation very essential

∙ Design team with complimentary skills.

∙ Better mechanism to allocate task keeping strengths and interests also into consideration

∙ Currently task allocation based on Mangers awareness about the team. It is difficult if

got to manage completely new team. Help to allocate task if new team to be managed.

7. Various approvals (such as managers’ approval) are part of software development lifecyle

(SDLC) and need better management. Design a process for seamless approvals to reduce

delays.

∙ A better managed approval process

∙ Delay in approval for config changes

8. Mechanism for CONTINUOUS PROCESS EVOLUTION based on best practices of individu-

als who exercise the process. Therefore, improve process by encouraging on-the-job learnings

of people.

∙ Process Vs Individual: Even though the process is defined and is standard, it again

depends on individual to proactively think and improve the way on-the-job learnings

can be put back as feedback to existing processes.

∙ Learn from knowledge or process variants of more efficient ppl and incorporate that to

others by changing defined process.

∙ Room for continuous improvements - mostly people try to handle the routine job without

thinking of a way to come out of the monotonous activity. This is very difficult to

decipher unless the resource voluntarily comes out and say about his work nature to

the project manager.
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∙ Identify most efficient variants and transfer that knowledge to other team members

∙ Though process brings standardization but people involved. Use data to connect dots

and optimize testing continuously.

∙ Processes are more important with the bigger team and should be introspected more

for continuous improvement.

9. [𝑀 ] Improve effectiveness of CODE REVIEW PROCESS AND STANDARDIZATION by

redesigning check list and updating code analyzers based on the defects reported during

testing.

∙ Effective code review and standardization. Create proper automated code analyzers

and update check list based on the defects reported during testing and after release.

∙ Code review checklist validation automation as currently ppl do it manually.

∙ Can we improve code review and ensure that it is done more efficiently. How to reduce

rework caused because of delayed defect detection? Identify the efficient set of process

practices to improve code review. May be redesign checklist based on learning from

current defects.

∙ High quality code review process.

∙ Mechanism to preempt use of FLOSS code if that can lead to problems. May be redesign

the checklist to take care of code from open source and prevent later mess

∙ Analyse review cycle variants for the cases where FLOSS code is used and learn from

it to modify the process such that violation of licence issues can be preempted

∙ Address the rework by coming up with a seamless mechanism for project code creation

and tracking.

10. Facilitate BETTER INTEGRATION between different silos by reconstructing the process

thus, reduce rework happening due to differences in understanding.

∙ Process brings consistency as we know what to expect and what to handover to other

person. Better Hand-off understanding. Process compliance checking is more important

for team with members having variation (in terms of skills, language, culture)
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∙ Is there a collaborating way to continuously integrate and check if it is going towards

right direction. A reconstructed process to facilitate better integration between different

silos.

∙ Process oriented projects end up throwing very good results. We need to understand the

current coordination between various silos and hence improve the overall coordination

pattern

∙ No coordination among teams (reporting, testing etc.)

∙ Better handshake between multiple parties like infrastructure and application also.

∙ Typical problem in development is to coordinate the DevOps activities. Eg. At time

of initiating the project, a large no. of teams like Analysts, Architects, Testing, train-

ing, release mngmt. Etc. need to come together need to understand the interaction

requirements and sign off. It would be interesting to look at the particular development

teams operating environment and clearly defined and optimize the process and inter-

actions. Aim should be two fold: 1. Define process that can be done in parallel rather

than sequential, 2. Reduce the amount of interactions that are required at the project

initiations, and get these started with a delay of around 4 weeks.

11. [𝑀 ] Handle CHANGING TEAMS seamlessly by analyzing interaction pattern between team

members and team dynamics.

∙ On long run in maintenance projects, chances are there as to too many changes in

the team, spread across states and hence no full or uniform disseminate of information

shared by client and how to achieve that. Though we have process in place, still

continuously changing team poses a challenge.

∙ Maintenance Phase: Lack of experience in support related tasks. Effective Knowledge

Management mechanism. Lights on coverage.

12. Design a technique to TRACE ADHERENCE WITH REQUIREMENTS and adapt process

automatically with changing requirements.

∙ Inability to trace requirements in an automated manner

∙ Check if there are any deviations from the requirements
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13. PEOPLE VS PROCESS: Identify which factor contributed to what extent towards the success

and failure of project.

∙ Identify exactly what contributed towards the success and failure of projects. Not make

it always that team is responsible. Sometimes we think that process effect is diluted

if we have high skilled people instead find best practices which compensate low skilled

people.

∙ It is very interesting to know people vs process. Where process adds value and where

doesn’t. Need a prescriptive process not descriptive

14. [𝑀 ] Simplify tracking of the whole CODE REVIEW PROCESS to identify inefficiencies

quickly.

∙ Code review tool is useful but tracking the whole review process is difficult

∙ Code review effectiveness needs improvement

∙ We do initial rapid prototyping and then incremental. Better impact analysis and that

too with high quality. From prev. code review if we can find out where we missed out

in the impact assessment to correct next time.

15. [𝑀 ] ♣During issue resolution, detection and analysis of PING-PONG patterns due to bug

tossing between developers to reduce resolution time. [Chapter 3]

∙ Many times an issue is reported as defect however it keeps tossing as developers say its

not defect or belongs to some other component. All lot of efforts go waste in this. Can

we improve process to reduce such cases

∙ Unnecessary delays and blame game: specially when defects are reported, it often leads

to delay and blame game. Understand those patterns with cause to avoid such tossing.

∙ Ping Pong patterns between various teams when an issue is reported.

16. Improve PROJECT PLANNING AND ESTIMATION by complimenting it with the insights

derived from event log mining of similar projects done in the past.

∙ Project planning for complex projects with short durations, more resources, more stake

holders and less duration is always challenging. Using PM, automate and give a strong

recommendation with some inputs from our side.
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∙ Effort estimation requires more accountability

∙ Reduce dependency on people. Facilitate quick analysis of tons of logs, provide reco

along with the stats for better estimation

17. [𝑀 ] ♣ Investigate the LEAD TIME for issue resolution by analyzing issue resolution process

from TIME PERSPECTIVE and thus increase timely resolutions. [Chapter 4]

∙ The support systems are clumsy to use and it is difficult to plan any task by considering

the lead time for the resolution of issue. Reduce lead time in solving repeated issues

for both the users and the support executives by designing an expert system (may be

using machine learning).

∙ Lead time in delivering to QA/Testing

18. Design of more meaningful QUALITY METRICS by understanding run time process prac-

tices to precisely identify the scope of improvement.

∙ Lack of effective project management tools. Have an automated tool using PM with

meaningful metrics to reflect discrete information w.r.t. project performance.

∙ Not all the data caught during development process is set into the bug tracking system

due to 1. difficulty in using the system, 2. tight coupling with the quality management

audits. Need to design more meaningful quality metrics by properly understanding the

process practices.

∙ Automate the task of report generation showing scope of improvement in process with

some metrics

19. [𝑀 ] Equip novices with the KNOWLEDGE OF EXPERIENCED PRACTITIONERS by

associating efficiency of adopted process with the experience of practitioners.

∙ Understand Experience association with the process adopted, efficiency. What sequence

of actions actually lead to resolution.

∙ Understand the practices of long term associated people with the project vs those who

participated for some time and then left as attrition is one of the concern. If it has

affect on process practices and therefore overall quality.
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∙ Freshers take lot more time to on-board than before from what I have observed. Can

you understand what artifacts they use, how can we better facilitate self-learning.

∙ Maintenance Phase: Lack of experience in support related tasks. Effective Knowledge

Management mechanism. Lights on coverage.

20. [𝑀 ] ♣ Facilitate in-depth understanding of point where things went wrong by deriving and

understanding actual process at a MORE GRANULAR LEVEL. [Chapter 5]

∙ If we can have process at more granular level it makes easy to find where it has gone

wrong.

21. Continuous check on SCHEDULE ADHERENCE is a complex task. Design an automated

way to track and preempt if any deviations.

∙ Schedule adherence becomes a complex task sometimes

22. [𝑀 ] Relate bugs with the ACTUAL STAGE OF INCEPTION by understanding issue reso-

lution life cycle along with other relevant attributes.

∙ Bug tracking to relate with the actual area the bug was introduced

∙ The Project team supporting an application having to sift through bunch of error mes-

sages/event logs in order to track the problem and possible root cause

∙ Though we have ticket tracking tools in place, we have to maintain the root causes and

solutions separately. This becomes very inconsistent as the resources keep on changing.

If PM can pull the log, analyse and the problem if it is recurrent, provide its stats, root

cause, best solution reco, prevention.

23. [𝑀 ] ♣ Uncover DEVIATIONS between the actual process followed by the team and the defined

process, their cause, impact on overall outcome and identify the set of people exhibiting more

deviations. [Chapter 3]

∙ Adherence to process is not high. Conviction that if I follow the process, it will help is

missing.

∙ No clear dashboard data that gives an overall view of the process followed/missed out

etc. and suggestions for improvement
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∙ PM needs to be done to find the adherence to process

∙ Based on my experience, most of the times it is process. I find it difficult to understand

where the process went wrong exactly. Understand the process deviation.

∙ Risk mngmt. Process ignored at the very project conception and startup stage eventu-

ally leads to greater risk taking leading to deviations of the project constraints during

the later stage. How can we control risk effectively to mitigate and erase their ill effects

at every stage as it progresses.

∙ Inconsistent use of process templates and PCB values, the prediction on data hampers.

This impacts estimation and projects may face risk.

∙ Audit Controls - Today production systems have numerous audit checks and balances

that are put in place for data sampling and identifying any anomalies in the process.

∙ Process brings consistency as we know what to expect and what to handover to other

person. Better Hand-off understanding. Process compliance checking is more important

for team with members having variation (in terms of skills, language, culture)

24. [𝑀 ] ♣ INTEGRATE MULTIPLE STANDALONE SYSTEMS used during SDLC to solve

data and process redundancy challenges, and obtain a holistic view. [Chapter 3]

∙ Some clients won’t give work in standard tool based system. Instead the work will come

in emails and meetings. Need for better "Integration of standalone systems"

∙ From a consultants point of view, if a domain has been attended or how a project has

been executed. Progress of project overall. Need for integration to have holistic view.

∙ Information scattered at multiple places, not in synch. Bring in one place to capture

all the info in one go.

∙ Continuous integration mechanism by using a system where we have all the SDLC phase

integrated with each other. Not achieved with existing TFS

25. [𝑀 ] Analyze code review life cycle to identify developers who are not reviewing their code

properly before they submit it for external review and the deviations from defined checklist.

It will help take corrective actions and reduce defects during testing phase.

∙ Can we check who is internally doing checklist for the sake of doing only. Find pat-

tern with the comments which developer gets more review comments. Checklist ->
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Comments -> Review -> Rework

∙ Is there an automated way to assess quality in terms of compliance to the checklist.

26. [𝑀 ] Mechanism to manage and keep track of SVN check-ins process that is, activity sequence

for merging and branching as it is very important and can help take informed decisions.

∙ SVN tools check-ins process for merging and branching is a situation which is difficult

to manage sometime

27. [𝑀 ] ♣ Capture the ACTUAL STATUS (reality) of project or any task by discovering run

time process from event logs instead of current manual practice. [Chapter 3, and 4]

∙ Work assignment happens formally. However, the current manual practice to get status

on each job is not reliable. Technically determine the correct status of project.

28. [𝑀 ] Trace the complete flow and understand WHICH ISSUE LEADS TO WHICH CODE

CHANGE by analyzing event logs for issue resolution in combination with the code modified

in VCS. [Chapter 3]

∙ Is there a way to create heat map of application. Look at issue logs to identify vulnerable

areas of application by mapping those issue logs with the code modified in VCS along

time dimension. Previous issue logs -> code change

29. [𝑀 ] ♣ Perform COMPARATIVE ANALYSIS OF TICKETS along dimensions such as com-

ponent, owner (analyst), reporter, type such as performance, regression and security, final

resolution such as duplicate, invalid and fixed, and turnaround time to derive useful insights

for improvement.

∙ Tickets and its analysis on where, how, who and time taken

∙ Improve performance/issue analysis, it saves a lot of time and will help to meet SLA’s

better

∙ Understand the phenomena of defects raised due to change or fix in shared library

especially in agile development.

∙ Process mine privacy and security issues resolution process

∙ Regression issues are many. What is the cause and how they can be fixed.
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∙ Duplicate issues reporting one of the major challenge. Identify the group of ppl doing

it the most and other characteristics

∙ Inability to trace history of defects

30. [𝑀 ] Identify the group of ACTIVE VS INACTIVE CONTRIBUTORS, GENERALIST VS

SPECIALIST by analyzing performance of individuals participating in the process.

∙ Finding out the weakest link in the project in terms of low or even wrong performing

members

∙ Performance analysis by bringing skills, learning, other activities, project work together
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Appendix B

Reducing User Input Requests in

Ticket Resolution

Activities of process model (refer to Figure B-1) along with the description:

∙ INIT : End user logs a ticket in ticketing system

∙ AutoAssign: Request is assigned to an analyst automatically

∙ PendingForDMA: Waiting for Delivery Manager (DM) approval

∙ AutoAssignFailed: Auto assignment failed so manager assigns ticket manually

∙ DM Approved: DM approves request for further progress

∙ FLD: Ticket properties such as impact, request area are updated

∙ LOG: A comment logged by user

∙ ESC : Priority is changed

∙ ATTACHTDOC : Required document is attached by the user

∙ ACK : Analyst changes the status to Acknowledge

∙ Transfer : Ticket transfer to other analyst

∙ Call Back: Return call request to end user

∙ Awaiting User Inputs: User input request by analyst
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∙ User IP Received: Inputs updated by end user

∙ RE : Ticket resolved by analyst

∙ Non-RE : User marks ticket not resolved before ticket closes

∙ AUI-Autoclosure: Auto close if no inputs received within 10 business days

∙ Autoclosure: Auto close if resolution not confirmed by user within 2 days

∙ Closed: Ticket service closed

∙ Reopen (RO): User dissatisfied with ticket closure, thus, reopens
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Figure B-1: Process map for IT support process of large global IT company where edges and
nodes are labeled with absolute frequency. Thickness of edge and shade of node corresponds
to absolute frequency. SLA clock state is indicated using pause/play icons.
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Appendix C

Identifying the Changes in Runtime

Behavior of a New Release

As shown in Figure C-1, we identified two diff regions between the execution behavior model of

two Nutch versions.

∙ Region 1 (highlighted in blue): We observe deletion of a set of vertices 𝑇1103 − 𝑇1109

(represented as dashed) from class Fetcher.java and addition of a set of new vertices (𝐸𝑋𝑇0−

𝐸𝑋𝑇5) (represented as double circled and bold edges) from apparently third party library

(prefixed with EXT).

We manually investigated this set of differences and found from the commit1 that the

code lines from class Fetcher corresponding to these templates are moved to another class

FetchItemQueue. Therefore, we investigate the source code for class FetchItemQueue and

found an issue with the logger of the class that is, used FetchItemQueues as logger instead

of FetchItemQueue. Consequently, the log messages from class FetchItemQueue had wrong

classname thus, not mapped to the corresponding source code logging statement instead are

treated as print from third party library. This explains that the deletion of source code

vertices and addition of vertices from apparently third party library in execution behavior

model is because of wrong logger being used in the newly created class after the commit.

This issue was introduced in Nutch version 1.11 and was fixed in Nutch version 1.13 after we

reported this in Nutch issue tracking system with issue ID, [NUTCH-2345]2.
1http://svn.apache.org/viewvc?view=revision&revision=1678281
2https://issues.apache.org/jira/browse/NUTCH-2345
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∙ Region 2 (highlighted in green): Key observations in the region include: (i) deletion of vertex

corresponding to template “Using queue mode : byHost” (that is, 𝑇1111, though present in

source code of both the versions), (ii) addition of vertex corresponding to template “* redirect

skipped: * to same url* (𝑇869), and (ii) significant change in distribution of a vertex such

that transition to vertex corresponding to template “- redirect count exceeded *” is increased

significantly, i.e, edge from 𝑇1135 → 𝑇1131 which happened only 2 times in 𝐸𝐵𝑀1 has

happened as much as 601 times in 𝐸𝐵𝑀2 causing a significant distribution anomaly. All

these observations are from class 𝐹𝑒𝑡𝑐ℎ𝑒𝑟𝑇ℎ𝑟𝑒𝑎𝑑.𝑗𝑎𝑣𝑎 which is investigated manually and a

bug is identified in the way URLs are redirected. Instead of following the correct redirect

link, the code was following the same link over and over again. After maximum retries is

exceeded further processing of the URL stopped with the message 𝑇1131 (- redirect count

exceeded *) thus, increased frequency. This bug is already reported as NUTCH-21243 and is

caused due to patch committed in bug [NUTCH-1934]

Diff between the two models can sometimes be complex and difficult to analyze. Therefore, as

part of future work, the identified diff regions will be automatically classified as potential anomaly.

Thus, help developers drill down to the root cause for subset of diff regions.

3https://issues.apache.org/jira/browse/NUTCH-2124
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Set of vertices deleted and a new set of
vertices appears in version2 execution
behavior model. This corresponds to a bug,
NUTCH-2345 that we reported and is fixed.

Transition to T1131 increased by 300 times that is,
redirect count exceeded happens more frequently.
This corresponds to bug NUTCH-2124

" - *redirect skipped: *to same url*” (T869)
and “Using queue mode – byHost” (T1111)
from FetcherThread.java appears and
disappears respectively in version2 while
present in both the versions' source code.
This corresponds to bug NUTCH-2124

Figure C-1: Execution behavior model differences for Nutch, a graphical representation
where dashed corresponds to deleted in new version (version2), double encircled/bold corre-
sponds to added in new version, and grey(light) corresponds to graph common in new and
deployed version (version1). Execution behavior model differences are annotated to highlight
the potential bugs.
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